Tìm x:
x^3+2x^2-11x-12 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(x^3-6x^2+11x-12=0\)
\(\Leftrightarrow\)\(x^3-4x^2-2x^2+8x+3x-12=0\)
\(\Leftrightarrow\)\(x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(x^2-2x+3\right)=0\)
Ta có: \(x^2-2x+3\)
\(=\left(x-1\right)^2+2>0\)
\(\Rightarrow\)\(x-4=0\)
\(\Leftrightarrow\)\(x=4\)
Vậy...
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
a) Ta có: \(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)hay x=1
Vậy: S={1}
c) Ta có: \(x+x^4=0\)
\(\Leftrightarrow x\left(x^3+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1>0\forall x\)
nên x(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: S={0;-1}
a) \(\Leftrightarrow36+3-11x=0\)
\(\Leftrightarrow-11x=-39\)
\(\Leftrightarrow x=\frac{39}{11}\)
b) \(x^2-2x\frac{1}{4}+\frac{1}{16}-\frac{81}{16}=0\)
\(\left(x-\frac{1}{4}\right)^2=\frac{81}{16}\)
\(x-\frac{1}{4}=\frac{9}{4}\)
\(x=\frac{10}{4}=\frac{5}{2}\)
c) \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x^2-4\right)\left(x-3\right)=0\)
\(\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
x = 2 hoặc x = - 2 hoặc x = 3
a) \(\frac{8}{2}\)
b) \(\frac{5}{2}\)
c) x=2 hoạc x=-2 hoặc x=3
a)1-6x2-x =0<=>-(6x2+x-1)=0<=>6x2+x-1=0
<=>(6x2+3x)-(2x+1)=0<=>3x(2x+1)-(2x+1)=0
<=>(3x-1)(2x+1)=0
=>3x-1=0 hoặc 2x+1=0=>x=\(\dfrac13\) hoặc x=-\(\dfrac12\)
Vậy S={\(\dfrac13\);-\(\dfrac12\)}
b)12x2+13x+3=0<=>12x2+9x+4x+3=0<=>(12x2+9x)+(4x+3)=0
<=>3x(4x+3)+(4x+3)=0<=>(3x+1)(4x+3)=0
=>3x+1=0 hoặc 4x+3=0 <=>x=-\(\dfrac13 \) hoặc x=-\(\dfrac34\)
Vậy S={-\(\dfrac13 \);-\(\dfrac34 \)}
c)x3-11x2+30x=0<=>x(x2-11x+30)=0<=>x[(x2-6x)-(5x-30)]=0
<=>x[x(x-6)-5(x-6)]=0<=>x(x-5)(x-6)=0
=>x=0 hoặc x-5=0 hoặc x-6=0=>x=0 hoặc x=5 hoặc x=6
Vậy S={0;5;6}
d)Ta có:(x2+x+1)(x2+x+2)-12=0
Đặt:t=x2+x+1
Khi đó:a(a+1)-12=0<=>a2+a-12=0<=>(a2+4a)-(3a+12)=0
<=>a(a+4)-3(a+4)=0<=>(a-3)(a+4)=0
hay (x2+x-2)(x2+x+5)=0
<=>(x-1)(x+2)(x2+x+5)=0(x2+x-2=(x-1)(x+2))
=>x-1=0 hoặc x+2=0(vì x2+x+5=(x+\(\dfrac12\))2+\(\dfrac{19}{4}\)>0)
=>x=1 hoặc x=-2
Vậy S={1;-2}
e)Ta có:2x2+x+6>x2+x+6=(x+\(\dfrac12\))2+\(\dfrac{23}{4}\)>0
nên PT vô nghiệm
Vậy S=\(\varnothing\)
1)2x3+3x2+2x+3=0
=> (2x3+3x2)+(2x+3)=0
=> x2(2x+3)+(2x+3)=0
=> (2x+3)(x2+1)=0
=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)
Vậy x=-3/2
2)x2-3x-18=0
=> (x2+3x)-(6x+18)=0
=> x(x+3)-6(x+3)=0
=> (x+3)(x-6)=0
=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)
Vậy x=-3 hoặc x=6
3)Sai đề rồi bạn, 30 thành 30x mới đúng
x3-11x2+30x=0
=> x(x2-11x+30)=0
=> x[(x2-5x)-(6x-30)]=0
=> x[x(x-5)-6(x-5)]=0
=> x(x-5)(x-6)=0
=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)
Vậy x=0 hoặc x=5 hoặc x=6
\(x^2+x-12=0\\ \Rightarrow\left(x^2+4x\right)-\left(3x+12\right)=0\\ \Rightarrow x\left(x+4\right)-3\left(x+4\right)=0\\ \Rightarrow\left(x-3\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
a: =>(2x-1-x-3)(2x-1+x+3)=0
=>(x-4)(3x+2)=0
=>x=-2/3 hoặc x=4
b: =>-5x^2+9x=0
=>-x(5x-9)=0
=>x=0 hoặc x=9/5
c: =>2x^2-10x-x+5=0
=>(x-5)(2x-1)=0
=>x=1/2 hoặc x=5
e: =>2x(x^2-25)=0
=>x(x-5)(x+5)=0
hay \(x\in\left\{0;5;-5\right\}\)
x3+2x2-11x-12=0
<=>(x3+x2-12x)+(x2+x-12)=0
<=>(x+1)(x2+x-12)=0
<=>(x+1)(x2+4x-3x-12)=0
<=>(x+1)(x+4)(x-3)=0
<=>x+1=0 hoặc x+4=0 hoặc x-3=0
<=>x=-1 hoặc x=-4 hoặc x=3
Vậy x={-4;-1;3}
x^3 + 2x^2 - 11x - 12 = 0
x^3 - 3x^2 + 5x^2 - 15x + 4x - 12 = 0
x^2 ( x- 3) + 5x( x -3) + 4( x - 3) = 0
( x - 3 )( x^2 + 5x + 4) = 0
( x - 3) ( x^2 + x + 4x + 4) = 0
( x - 3) [ x( x + 1) + 4 (x + 1) ] = 0
( x - 3 )( x + 4 )( x + 1) = 0
=> x - 3 = 0 hoặc x + 4 = 0 hoặc x + 1 = 0
=> x= 3 hoặc x = -4 ; x = -1