cho A1-1/2^2-1/3^2-1/4^2-1/5^2...-1/2010^2. chứng tỏ A>1/2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
\(A=\frac{1}{5}+\frac{1}{5^2}+........+\frac{1}{5^{2014}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...........+\frac{1}{5^{2013}}\)
\(\Rightarrow5A-A=1+...........+\frac{1}{5^{2013}}-\frac{1}{5}+...........+\frac{1}{5^{2014}}\)
\(\Rightarrow4A=1-\frac{1}{5^{2014}}\)
\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)
=> 5A = 1 + 1/5 +...+1/5^2013
=>4A= 1- 1/5^2014
=> 4A< 1 => A < 1/4
\(n^2>\left(n-1\right)\left(n+1\right)\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right).\)
Do đó: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2012.2014}+\frac{1}{2013.2015}=\)
\(=\frac{1}{2}[1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2015}]=\)
\(=\frac{1}{2}[1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{1}{2}[\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}.\)
mình nói thêm về câu hỏi , câu số 2 thiếu chỗ cuối là ' Chứng tỏ A < 1
#)Giải :
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}\right)\)
Vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{5}{9}>\frac{1}{2}\)
Và \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{10}{19}>\frac{1}{2}\)
\(\Rightarrow B>\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
\(\Rightarrow B>1\)