\(3^{x+1}+2x\cdot3^x-18x-27=0\)timf x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+1 + 2x.3x - 18x - 27 = 0
=> 3x.3 + 2x.3x - (18x + 27) = 0
=> 3x.(3 + 2x) - 9.(2x + 3) = 0
=> (2x + 3).(3x - 9) = 0
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\3^x-9=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x=-3\\3^x=9\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=2\end{cases}}\)
Vậy ...
3x+1+2X.3x-18x+27=0
<=> 3x(3+2x)-9(3+2x)=0
<=> (3+2x)(3x-9)=0
\(\Leftrightarrow\orbr{\begin{cases}3+2x=0\\3^x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1,5\\x=2\end{cases}}\)
\(3^{x+1}+2x.3^x-18x-27=0\)
\(\Leftrightarrow3^x\left(2x+3\right)-9\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3^x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3^x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=2\end{matrix}\right.\)
Vậy ...............
\(3^{x+1}+2x+3^x-18x-27=0\)
<=> \(3^x\left(3+2x\right)-9\left(2x+3\right)=0\)
<=> \(\left(2x+3\right)\left(3^x-9\right)=0\)
<=>\(\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)
vậy.......
3x + 1 + 2x .3x - 18x - 27 = 0
<=> 3x ( 3 + 2x ) - 9 ( 2x + 3 ) = 0
<=> ( 3x - 9 ) ( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}3^x-9=0\\2x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}3^x=9\\2x=-3\end{cases}}\)
<=>\(\orbr{\begin{cases}3^x=3^2\\x=-\frac{3}{2}\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
Lời giải:
Đặt $2^x=a; 3^{\frac{1}{x}}=b$. PT đã cho tương đương với:
\((2^x)^3+(3^{\frac{1}{x}})^3+2.2^x.3.3^{\frac{1}{x}}+2^x.3^2.3^{\frac{1}{x}}=125\)
\(\Leftrightarrow a^3+b^3+6ab+9ab=125\)
\(\Leftrightarrow a^3+b^3+15ab-125=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+15ab-5^3=0\)
\(\Leftrightarrow (a+b)^3-5^3-3ab(a+b-5)=0\)
\(\Leftrightarrow (a+b-5)[(a+b)^2+5(a+b)+25-3ab]=0\)
\(\Rightarrow \left[\begin{matrix} a+b-5=0\\ a^2+b^2+25-2ab+5a+5b=0\end{matrix}\right.\)
Nếu $a+b-5=0$
$\Leftrightarrow 2^x+3^{\frac{1}{x}}=5$
Hiển nhiên PT có nghiệm $x=1$. Còn 1 nghiệm nữa là nghiệm vô tỷ. Mình nghĩ với kiến thức lớp 9 mà không có thêm điều kiện ràng buộc của $x$ thì rất khó để giải.
Nếu $a^2+b^2+25-2ab+5a+5b=0$
$\Leftrightarrow \frac{(a-b)^2+(a+5)^2+(b+5)^2}{2}=0$
$\Rightarrow (a-b)^2=(a+5)^2=(b+5)^2=0$
$\Rightarrow a=b=-5$ (vô lý vì $2^x, 3^{\frac{1}{x}}$ luôn dương với mọi $x$)
@Nguyễn Việt Lâm bài pt này em giải mãi mak ch ra, nên anh giúp em nhé !!!
\(a,2x^2-18x+28=0\)
\(\Leftrightarrow2\left(x^2-9x+14\right)=0\)
\(\Leftrightarrow x^2-9x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)
\(b,\dfrac{x-2}{x^2-9}+\dfrac{3x-1}{x+3}=\dfrac{2x+1}{x-3}+1\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(3x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-1=0\)
\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{3x^2-10x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{2x^2+7x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\)\(\Rightarrow x-2+3x^2-10x+3-2x^2-7x-3-x^2+9=0\)
\(\Leftrightarrow-16x+7=0\)
\(\Leftrightarrow-16x=-7\)
\(\Leftrightarrow x=\dfrac{7}{16}\left(tm\right)\)
\(VậyS=\left\{\dfrac{7}{16}\right\}\)
a: =>x^2-9x+14=0
=>(x-2)(x-7)=0
=>x=2 hoặc x=7
b: =>x-2+(3x-1)(x-3)=(2x+1)(x+3)+x^2-9
=>x-2+3x^2-9x-x+3=2x^2+7x+3+x^2-9
=>3x^2-9x+1=3x^2+7x-6
=>-16x=-7
=>x=7/16
<=> 3x(2x+3)-9(2x+3)=0
<=> (2x+3)(3x-9)=0
<=> 2x+3=0 => x=-3/2
Và: 3x-9=0 => 3x=9=32 => x=2
Đs: x=-3/2 và x=2