CMR: 1/2+1/3+1/4+...+1/63>2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>\frac{1}{31}+\frac{1}{31}+\frac{1}{31}+...+\frac{1}{31}\)(62 số hạng \(\frac{1}{31}\))
\(\Leftrightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>\frac{62.1}{31}=\frac{62}{31}=2\)
Vậy \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2^{\left(đpcm\right)}\)
Đặt \(A=1+\frac{1}{2}+...+\frac{1}{64}\)
Ta có: \(A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)\)\(+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)
Ta thấy : \(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+...+\frac{1}{8}>\frac{1}{8}+...+\frac{1}{8}=\frac{1}{8}.4=\frac{1}{2}\)
\(\frac{1}{9}+\frac{1}{16}>\frac{1}{16}+...+\frac{1}{16}=\frac{1}{16}.8=\frac{1}{2}\)
\(\frac{1}{17}+...+\frac{1}{32}>\frac{1}{32}+...+\frac{1}{32}=\frac{1}{32}.16=\frac{1}{2}\)
\(\frac{1}{33}+...+\frac{1}{64}>\frac{1}{64}+...+\frac{1}{64}=\frac{1}{64}.32=\frac{1}{2}\)
\(\Rightarrow A>1+\frac{1}{2}.6=4\)
Vậy \(A>4\)
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}+\frac{1}{64}>4.\)
Có :\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}+\frac{1}{64}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+....+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)
Ta có \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}\)
và \(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)
ta có \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}\)
và \(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\)
tương tự như trên ta tính được
\(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}>\frac{1}{16}\cdot8=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>\frac{1}{32}\cdot16=\frac{1}{2}\)
\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+..+\frac{1}{64}>\frac{1}{64}\cdot32=\frac{1}{2}\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}+\frac{1}{64}>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+1\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}+\frac{1}{64}>4\)
S\(=\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{62}\right)\)\(+\)\(\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+....+\frac{1}{63}\right)\)
ta thấy S1=\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{62}\)có 31 số
\(\frac{1}{61}< \frac{1}{2},\frac{1}{62}< \frac{1}{4}...\)\(\Rightarrow\)S1 > \(\frac{1}{62}+\frac{1}{62}+..+\frac{1}{62}\)( có 31 số ) \(=\frac{31}{62}=\frac{1}{2}\)
S2 = \(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{63}\)( có 31 số )
ta thấy \(\frac{1}{63}< \frac{1}{3},\frac{1}{63}< \frac{1}{5}...\)\(\Rightarrow\)S2 > \(\frac{1}{63}+\frac{1}{63}+...+\frac{1}{63}\)( có 31 số ) \(=\frac{31}{63}=\frac{1}{3}\)
S1 + S2 > \(\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
=> S > 2
câu 2 là 3<1+1/2+1/3+1/4+...+1/62+1/63<6 nhé
mk ghi nhầm đề baif
1/2+1/3+1/4+.....+1/63>1/31+.....1/31(62 số hạng 1/31)
hay 1/2+1/3+1/4+.......+1/63>62x1/31
nên 1/2+1/3+1/4+......+1/63>2
ai tk mk mk kb lun hứa đó
mk đang âm điểm nè