K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Bạn ghi đề thiếu kìa bạn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)nữa

\(\frac{a}{d}=\frac{a}{b}\times\frac{b}{c}\times\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

19 tháng 3 2017

Bằng 1 bạn ạ.

16 tháng 8 2019

bạn vào câu hỏi tương tự ấy

7 tháng 8 2019

Áp dụng BĐT cosi ta có

\(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)\(\frac{1}{c^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{3}{c^2d}\)

\(\frac{1}{d^3}+\frac{1}{d^3}+\frac{1}{a^3}\ge\frac{3}{d^2a}\)

Cộng các BĐt trên ta có 

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\)(1)

Áp dụng BĐT buniacoxki ta có

\(\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)\left(\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\right)\ge \left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)^2\)

Kết hợp với (1)  ta được ĐPCM

Dấu bằng xảy ra khi a=b=c

22 tháng 10 2016

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

22 tháng 10 2016

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

12 tháng 3 2016

Vì  a/b=b/c=c/d=>(a+b+c)/(b+c+d)=a/b.=>(a+b+c/b+c+d)3=(a/b)3=a/b.a/b.a/b

Mà a/b=b/c=c/d=>(a+b+c/b+c+d)3=a/b.b/c.c/d=(a.b.c)/(b.c.d)=a/d

=>ĐPCM

5 tháng 9 2016

a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\Leftrightarrow\left(\frac{bk-b}{dk-d}\right)^2=\frac{bkb}{dkd}\)

Xét VT \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(1\right)\)

Xét VP \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

5 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(a=bk\)

\(c=dk\)

a) Ta có:
 

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\left(đpcm\right)\)

b) Ta có:

\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{d}{b}\right)^3\) (1)

\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) suy ra\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\) (đpcm)

 

 


 

16 tháng 8 2019

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 8 2019

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

19 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) Ta có:

\(\frac{11a+3b}{11c+3d}=\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\) (1)

\(\frac{3a-11b}{3c-11d}=\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\) (đpcm)

b) Ta có:

\(\frac{1111c-99d}{9999c-11d}=\frac{1111dk-99d}{9999dk-11d}=\frac{d\left(1111k-99\right)}{d\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\) (1)

\(\frac{1111a-99b}{9999a-11b}=\frac{1111bk-99b}{9999bk-11b}=\frac{b\left(1111k-99\right)}{b\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\) (2)

Từ (1) và (2) suy ra \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\) (đpcm)