K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2023

Theo đề ta có: 

\(\overline{2023a}⋮2022\) (với a có n chữ số, \(n\inℕ^∗\))

\(\Leftrightarrow\left(2023\cdot10^n+a\right)⋮2022\)

Vì \(2023\equiv1\left(mod2022\right)\Leftrightarrow2023\cdot10^n+a\equiv10^n+a\left(mod2022\right)\)

Mà \(\overline{2023a}⋮2022\Rightarrow\left(10^n+a\right)⋮2022\)

Xét \(a⋮2022\). Vì \(\left(10^n+a\right)⋮2022\) nên \(10^n⋮2022\) (không có nghiệm).

Khi đó \(a⋮̸2022\). Đặt x sao cho \(a\equiv x\left(mod2022\right)\).

Suy ra \(10^n\equiv2022-x\left(mod2022\right)\)

Ta có bảng sau:

n 1 2 3 4 5 ...
2022 - x 10 100 1000 1912 922 ...
x 2012 1922 1022 110 1100 ...
Min(a) > 10n Không có Không có Không có 2132 11210 ...
Chọn hay loại? Loại Loại Loại Chọn Loại ...

Vậy số tự nhiên a cần tìm là 2132.

P/s: bài này có vẻ không phải lớp 7!!!

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
Giả sử số $a$ có $n$ chữ số. Khi đó:
$\overline{2023a}=2023.10^n+a=2022.10^n+10^n+a$

Để $\overline{2023a}\vdots 2022$ thì $10^n+a\vdots 2022$

$\Rightarrow 10^n+a\geq 2022$

Nếu $a$ có 3 chữ số: $10^n+a\leq 10^3+999=1999$ (không thỏa mãn) (vô lý)

$\Rightarrow a$ phải có từ 4 chữ số trở lên

$\Rightarrow n\geq 4$.

Đặt $10^n+a=2022k$ với $k$ tự nhiên. Do $a$ có ít nhất 4 chữ số nên:
$2022k=10^n+a\geq 10^4+1000=11000$

$\Rightarrow k\geq 6$

Để $a$ nhỏ nhất thì $k$ nhỏ nhất, Suy ra $k=6$

$10^n+a=2022.6=12132$

$\Rightarrow n=4; a=2132$

Vậy số cần tìm là $2132$

26 tháng 11 2019

 bang 3 nha bsn

hok ~ tot

20 tháng 2 2020

Giả sử số tự nhiên a có n chữ số \(a=\overline{a_1a_2a_3...a_n}\)

Theo đề bài, ta có: \(\overline{2004a_1a_2a_3...a_n}⋮2018\)

\(\Rightarrow2004.10^n+\overline{a_1a_2a_3...a_n}⋮2003\)

\(\Rightarrow2003.10^n+10^n+\overline{a_1a_2a_3...a_n}⋮2003\)

Vì \(2003.10^n⋮2003\)nên \(10^n+\overline{a_1a_2a_3...a_n}⋮2003\)

Dễ thấy \(10^n+\overline{a_1a_2a_3...a_n}>0\)nên \(10^n+\overline{a_1a_2a_3...a_n}\ne0\)

\(\Rightarrow10^n+\overline{a_1a_2a_3...a_n}⋮2003\)khi và chỉ khi \(10^n+\overline{a_1a_2a_3...a_n}\ge2003\)

\(\Rightarrow n\ge4\)

Để a nhỏ nhất thì n nhỏ nhất, khi đó n = 4

\(\Rightarrow10^4+\overline{a_1a_2a_3a_4}⋮2003\)

\(\Rightarrow1988+8012+\overline{a_1a_2a_3a_4}⋮2003\)

Vì \(8012⋮2003\)nên \(1988+\overline{a_1a_2a_3a_4}⋮2003\)

\(\Rightarrow1988+\overline{a_1a_2a_3a_4}=2003k\left(k\inℕ^∗\right)\)

\(\Rightarrow\overline{a_1a_2a_3a_4}=2003k-1988\ge1000\)

\(\Rightarrow2003k\ge2988\Rightarrow k\ge1,49176...\Rightarrow k\ge2\)(vì \(k\inℕ^∗\))

Để a nhỏ nhất thì k cũng nhỏ nhất, khi đó k = 2

\(\Rightarrow\overline{a_1a_2a_3a_4}=2003.2-1988=2018\)

Vậy số tự nhiên a nhỏ nhất cần tìm là 2018.

31 tháng 12 2015

chả cần tìm số nào có dạng a2009 chia hết 152 là được

31 tháng 12 2015

Nguyễn Quang Thành bị say à 2009a mà

31 tháng 3 2023

Số chẵn chia 5 dư 2 => Tận cùng số đó là 2

Vì 8+7+9+2= 26

Số sau khi thêm chia hết cho 9 => Số sau khi thêm là 18792

14 tháng 1 2017

mình ra 79 nhưng ko biết cách làm

21 tháng 1 2017

79 nha ban

chuc ban hoc gioi

k mình nha

2 tháng 1 2016

viết chính số đó vào :(

2 tháng 1 2016

nếu số đó là 1998 thì đáp án là 79