tìm a,b,c,d thuộc N sao cho/a-b/+/b-c/+/c-d/+/d-a/=2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(a - b) + (b - c) + (c - d) + (d - a)
= a - b + b - c + c - d + d - a
= 0, là số chẵn
Do |a - b| + |b - c| + |c - d| + |d - a| có cùng tính chẵn lẻ với (a - b) + (b - c) + (c - d) + (d - a) => |a - b| + |b - c| + |c - d| + |d - a| chẵn, trái với đề bài
Vậy không tìm được giá trị a,b,c,d thỏa mãn
Chứng minh bổ đề với \(x\inℝ\), ta có:
\(\left|x\right|+x\equiv0\left(mod2\right)\)
Với \(x\ge0\Rightarrow\left|x\right|=x\Rightarrow\left|x\right|+x=x+x=2x\equiv0\left(mod2\right)\)
Với \(x< 0\Rightarrow\left|x\right|=-x\Rightarrow\left|x\right|+x=-x+x=0\equiv0\left(mod2\right)\)
Áp dụng vào ta được:
\(\left\{{}\begin{matrix}\left|a-b\right|+a-b\equiv0\left(mod2\right)\\\left|b-c\right|+b-c\equiv0\left(mod2\right)\\\left|c-d\right|+c-d\equiv0\left(mod2\right)\\\left|d-a\right|+d-a\equiv0\left(mod2\right)\end{matrix}\right.\Rightarrow\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-a\right|\equiv0\left(mod2\right)\)
Mà đề ra \(2015\equiv1\left(mod2\right)\)
\(\Rightarrow\)Vô lý
\(\Rightarrow\)Không có \(a,b,c,d\) thoả mãn đề bài.