Cho ΔABC đều cạnh a nội tiếp (O;R).Giá trị của R bằng
A.a B.\(a\sqrt{3}\) C.\(\dfrac{a\sqrt{3}}{3}\) D.\(\dfrac{a\sqrt{3}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
a: Xét (O) có
OH là một phần đường kính
BC là dây
OH⊥BC tại H
Do đó:H là trung điểm của BC
Xét ΔABC có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABC cân tại A
Xét ΔOBA và ΔOCA có
OB=OC
BA=CA
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến
b: Xét ΔOBA vuông tại B có
\(\sin BAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
=>\(\widehat{BAO}=30^0\)
hay \(\widehat{BAC}=60^0\)
mà ΔABC cân tại A
nên ΔABC đều
Chọn đáp án B.
Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.
Gọi M là trung điểm BC:
`\triangle ABC` đều nội tiếp `(O;R)`
`=>R=2/3` đường cao `\triangle ABC`
Mà đường cao `\triangle ABC=[\sqrt{3}a]/2`
`=>R=2/3 .[\sqrt{3}a]/2=[\sqrt{3}a]/3`
`->\bb C`
Chọn C