Cho tam giác ABC có trung tuyến BD và CE cắt nhau tại G. AG cắt DE tại O. CMR: O là trung điểm DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//ED và MN=ED
hay MNDE là hình bình hành
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra DE//MN và DE=MN
b:Xét ΔEBC và ΔDCB có
EB=DC
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)
hay \(\widehat{GBC}=\widehat{GCB}\)
Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)
nên ΔGBC cân tại G
Suy ra: GB=GC
Suy ra: G nằm trên đường trung trực của BC(3)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra AG là đường trung trực của BC
hay AG\(\perp\)BC
Xét \(\Delta ABC\)có:
\(EA=EB\left(gt\right)\)
\(DA=DC\left(gt\right)\)
\(\Rightarrow ED\)là đường trung bình của \(\Delta ABC.\)
\(ED=\frac{1}{2}BC;\)\(ED\)//\(BC\left(1\right)\)
Xét \(\Delta GBC\)có:
\(MG=MB\left(gt\right)\)
\(NG=NC\left(gt\right)\)
\(\Rightarrow MN\)là đường trung bình \(\Delta GBC.\)
\(MN=\frac{1}{2}BC;\)\(MN\)//\(BC\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow DE=MN;\)\(DE\)//\(MN.\)
Xét \(\Delta ABC\) có :
\(AE=EB\left(gt\right)\)
\(AD=DC\left(gt\right)\)
\(\Rightarrow ED\) là đường trung bình
\(\Rightarrow ED\)//\(BC\) và \(ED=\frac{1}{2}BC\) ( 1 )
Xét \(\Delta GBC\) có :
\(GI=IB\left(gt\right)\)
\(GK=KC\left(gt\right)\)
\(\Rightarrow IG\) là đường trung bình
\(\Rightarrow IG\)//\(BC\) và \(IG=\frac{1}{2}BC\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow DE\)//\(IK\) và \(DE\)=\(IK\)
+) Tam giác ABC có D; E là trung điểm của AB; AC
=> DE là đường tring bình của tam giác => DE// BC và DE = BC/2 (1)
+) Tam giác GBC có I: K là Trung điểm của GB; GC
=> IK là đường trung bình của tam giác
=> IK //BC và IK = BC/ 2 (2)
Từ (1)(2) => DE//IK và DE = IK
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
Gọi giao của AG với BC là M
=>M là trung điểm của BC
Xét ΔABC có E,D lần lượt là trung điểm của AB,AC
nên ED là đường trung bình
=>ED//BC và ED=1/2BC
Xét ΔABM có EO//BM
nên EO/BM=AE/AB=1/2
=>EO=1/2BM=1/2CM
Xét ΔAMC có OD//MC
nên OD/MC=AD/AC=1/2
=>OD=1/2CM
=>OD=EO
=>O là trung điểm của DE