Tìm nϵN để các phân số sau tối giảm
a) A=\(\dfrac{2n+7}{5n+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Gọi a là ƯCLN của 2n+5 và n+3.
- Ta có: (n+3)⋮a
=>(2n+6)⋮a
Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a
=>1⋮a
=>a=1 hay a=-1.
- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.
b) -Để phân số B có giá trị là số nguyên thì:
\(\left(2n+5\right)⋮\left(n+3\right)\)
=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)
=>\(-1⋮\left(n+3\right)\).
=>\(n+3\inƯ\left(-1\right)\).
=>\(n+3=1\) hay \(n+3=-1\).
=>\(n=-2\) (loại) hay \(n=-4\) (loại).
- Vậy n∈∅.
1. a) Gọi `(2n +5 ; n + 3 ) = d`
`=> {(2n+5 vdots d),(n+3 vdots d):}`
`=> {(2n+5 vdots d),(2(n+3) vdots d):}`
`=> {(2n+5 vdots d),(2n+6 vdots d):}`
Do đó `(2n+6) - (2n+5) vdots d`
`=> 1 vdots d`
`=> d = +-1`
Vậy `(2n+5)/(n+3)` là phân số tối giản
b) `B = (2n+5)/(n+3)` ( `n ne -3`)
`B = [2(n+3) -1]/(n+3)`
`B= [2(n+3)]/(n+3) - 1/(n+3)`
`B= 2 - 1/(n+3)`
Để B nguyên thì `1/(n+3)` có giá trị nguyên
`=> 1 vdots n+3`
`=> n+3 in Ư(1) = { 1 ; -1}`
+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)
+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)
Vậy `n in { -2; -4}` thì `B` có giá trị nguyên
2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)
Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)
Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)
Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)` (học sinh)
Vì số học sinh của lớp `6A` không đổi nên ta có :
`7/3x + x = 3/2 (x+4) + x+4`
`=> 10/3 x = 3/2 x + 6 + x + 4`
`=> 10/3 x - 3/2 x -x = 10 `
`=> 5/6x = 10`
`=> x=12` (thỏa mãn điều kiện)
`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh
`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh
`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)
Vậy lớp `6A` có `40` học sinh
a) để 2n+3/4n+1 là phân số tối giản thì ta đi chứng minh 2n+3 và 4n+1 là nguyên tố cùng nhau .
=>UCLN ( 2n+3;4n+1 ) = d
ta có : 2n+1 chia hết cho d
4n+1 chia hết cho d
=> 2(2n+1) chia hết cho d
4n+1 chia hết cho d
=> 4n+2 chia hết cho d
4n+1 chia hết cho d
=> [( 4n+2)-(4n+1)] chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ucln ( 2n+3; 4n+1)=1
vì ucln ( 2n+3;4n+1)=1 nên 2n+3=1;4n+1=1
2n=1-3 4n=1-1
2n=-2 4n=0
n=-1(loại) n=0 ( chọn)
vậy để 2n+3/4n+1 là phân số tối giản thì n=0
tớ nghĩ thế ko biết có đúng ko !
nhưng nếu cảm thấy đúng thì nhớ tk cho tớ nhé
mấy phần còn lại thì các bạn cứ làm như phần a nhé !
Câu 11. Không khí nóng nhẹ hơn không khí lạnh vì
A. khối lượng riêng của không khí nóng nhỏ hơn.
B. khối lượng của không khí nóng nhỏ hơn.
C. khối lượng của không khí nóng lớn hơn.
D. khối lượng riêng của không khí nóng lớn hơn.
Câu hỏi của Đỗ Quynhg Anh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo bài nhé !!!
a) n = 0 ; 4 ; 3 ; 2 ; 100 ; ...
b) n = 5 ; 4 ; 1 ; ...
c) n = 0 ; ...
bạn tự giải lấy các số còn '' nhại '' nghen
Vì n là số nguyên nên 2n + 7 và 5n + 2 là số nguyên.
Gọi d∈ƯC(2n+7,5n+2)�∈Ư�(2�+7,5�+2)
⇒2n+7⋮d⇒2�+7⋮�và 5n+2⋮d5�+2⋮�
⇒5(2n+7)−2(5n+2)⋮d⇒10n+35−10n−4⋮d⇒5(2�+7)−2(5�+2)⋮�⇒10�+35−10�−4⋮�
⇒31⋮d⇒d∈{1;−1;31;−31}⇒31⋮�⇒�∈{1;−1;31;−31}
Ta có 2n+7⋮31⇔2n+7+31⋮31⇔2n+38⋮31⇔2(n+19)⋮312�+7⋮31⇔2�+7+31⋮31⇔2�+38⋮31⇔2(�+19)⋮31
Vì (2,31)=1⇒n+19⋮31⇔n+19=31k⇔n=31k−19(2,31)=1⇒�+19⋮31⇔�+19=31�⇔�=31�−19
+) Nếu n=31k−19�=31�−19
⇒2n+7=2(31k−19)+7=62k−38+7=62k−31⇒2�+7=2(31�−19)+7=62�−38+7=62�−31
=31(2k−1)⋮31=31(2�−1)⋮31mà 2n+7>2⇒2n+72�+7>2⇒2�+7là hợp số ( loại )
+) Nếu n≠31k−19�≠31�−19thì 2n+72�+7ko chia hết cho 31.
⇒ƯC(2n+7,5n+2)={1;−1}⇒Ư�(2�+7,5�+2)={1;−1}
⇒2n+75n+2⇒2�+75�+2là PSTG .
Vậy n\n≠31k−19�≠31�−19thì 2n+75n+22�+75�+2là PSTG ∀∀số nguyên n.
Vì n là số nguyên nên 2n + 7 và 5n + 2 là số nguyên.
Gọi d∈ƯC(2n+7,5n+2)�∈Ư�(2�+7,5�+2)
⇒2n+7⋮d⇒2�+7⋮�và 5n+2⋮d5�+2⋮�
⇒5(2n+7)−2(5n+2)⋮d⇒10n+35−10n−4⋮d⇒5(2�+7)−2(5�+2)⋮�⇒10�+35−10�−4⋮�
⇒31⋮d⇒d∈{1;−1;31;−31}⇒31⋮�⇒�∈{1;−1;31;−31}
Ta có 2n+7⋮31⇔2n+7+31⋮31⇔2n+38⋮31⇔2(n+19)⋮312�+7⋮31⇔2�+7+31⋮31⇔2�+38⋮31⇔2(�+19)⋮31
Vì (2,31)=1⇒n+19⋮31⇔n+19=31k⇔n=31k−19(2,31)=1⇒�+19⋮31⇔�+19=31�⇔�=31�−19
+) Nếu n=31k−19�=31�−19
⇒2n+7=2(31k−19)+7=62k−38+7=62k−31⇒2�+7=2(31�−19)+7=62�−38+7=62�−31
=31(2k−1)⋮31=31(2�−1)⋮31mà 2n+7>2⇒2n+72�+7>2⇒2�+7là hợp số ( loại )
+) Nếu n≠31k−19�≠31�−19thì 2n+72�+7ko chia hết cho 31.
⇒ƯC(2n+7,5n+2)={1;−1}⇒Ư�(2�+7,5�+2)={1;−1}
⇒2n+75n+2⇒2�+75�+2là PSTG .
Vậy n\n≠31k−19�≠31�−19thì 2n+75n+22�+75�+2là PSTG ∀∀số nguyên n.