Cho đường tròn tâm O, cát tuyến (d) cắt đường tròn tại A và B, C thuộc (d) sao cho A nằm giữa C và B. từ C vẽ tiếp tuyến CN với đường tròn tại N (N thuộc cung lớn AB), CO cắt đường tròn tại E và F. Từ N hạn NI vuông góc với CO tại I. Chứng minh góc EIA = góc OAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔOAB cân tại O
mà OE là đường cao
nên OE\(\perp\)AB
Xét tứ giác OECN có \(\widehat{OEC}+\widehat{ONC}=90^0+90^0=180^0\)
nên OECN là tứ giác nội tiếp
=>O,E,C,N cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{CNA}\) là góc tạo bởi tiếp tuyến NC và dây cung NA
\(\widehat{ABN}\) là góc nội tiếp chắn cung AN
Do đó: \(\widehat{CNA}=\widehat{ABN}\)
Xét ΔCNA và ΔCBN có
\(\widehat{CNA}=\widehat{CBN}\)
\(\widehat{NCA}\) chung
Do đó: ΔCNA~ΔCBN
=>\(\dfrac{CN}{CB}=\dfrac{CA}{CN}\)
=>\(CN^2=CA\cdot CB\)
c: Xét ΔOCN vuông tại N có NH là đường cao
nên \(CH\cdot CO=CN^2\)
=>\(CH\cdot CO=CA\cdot CB\)
=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
Xét ΔCHA và ΔCBO có
\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCBO
=>\(\widehat{CHA}=\widehat{CBO}\)
mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)
nên \(\widehat{CHA}=\widehat{OAB}\)
bạn tham khảo ở đây nha,mình từng giải rồi
https://hoc24.vn/cau-hoi/cho-duong-tron-o-duong-kinh-ab-tren-tiep-tuyen-tai-a-cua-duong-trong-o-lay-diem-c-ve-tuyep-tuyen-cn-va-cat-tuyen-cde-tia-cd-nam-giua-2-tai-ca-co-de-thuoc-duong-tron-o-d-nam-giua-c-va-e.1081799079177
a) Vì CA là tiếp tuyến \(\Rightarrow\angle CAD=\angle CEA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)
Xét \(\Delta CAD\) và \(\Delta CEA:\) Ta có: \(\left\{{}\begin{matrix}\angle CAD=\angle CEA\\\angle ACEchung\end{matrix}\right.\)
\(\Rightarrow\Delta CAD\sim\Delta CEA\left(g-g\right)\Rightarrow\dfrac{CA}{CE}=\dfrac{CD}{CA}\Rightarrow CA^2=CD.CE\)
mà \(CH.CO=CA^2\) (hệ thức lượng) \(\Rightarrow CD.CE=CH.CO\)
c) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)
Vì CA,CN là tiếp tuyến \(\Rightarrow\Delta CAN\) cân tại C có CO là phân giác \(\angle ACN\)
\(\Rightarrow CO\bot AN\Rightarrow\angle AHM=90\)
\(\Rightarrow\angle AHM=\angle ADM=90\Rightarrow ADHM\) nội tiếp
Ta có: \(\angle EAF=\angle DAE-\angle DAF=180-\angle DBE-\angle CHD\) (ADHM,ADBE nội tiếp)
Ta có: \(CD.CE=CH.CO\Rightarrow\dfrac{CD}{CO}=\dfrac{CH}{CE}\)
Xét \(\Delta CHD\) và \(\Delta CEO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{CD}{CO}=\dfrac{CH}{CE}\\\angle OCEchung\end{matrix}\right.\)
\(\Rightarrow\Delta CHD\sim\Delta CEO\left(c-g-c\right)\Rightarrow\angle CHD=\angle CEO\Rightarrow DHOE\) nội tiếp
\(\Rightarrow\angle CHD=\angle CEO=\angle DEO=\dfrac{180-\angle DOE}{2}=90-\dfrac{1}{2}\angle DOE\)
\(=90-\angle DBE\Rightarrow\angle EAF=180-\angle DBE-\left(90-\angle DBE\right)=90\)
\(\Rightarrow EF\) là đường kính \(\Rightarrow E,O,F\) thẳng hàng
a: góc CMO+góc CNO=180 độ
=>CMON nội tiếp
b: Xét ΔCMA và ΔCBM có
góc CMA=góc CBM
góc MCA chung
=>ΔCMA đồng dạng với ΔCBM
=>CM^2=CA*CB
Xét ΔCNO vuông tại N có NI là đường cao
nên CI*CO=CN^2
Xét ΔCNA và ΔCBN có
góc CNA=góc CBN
góc NCA chung
=>ΔCNA đồng dạng vơi ΔCBN
=>CN/CB=CA/CN
=>CN^2=CA*CB=CI*CO
=>CI/CB=CA/CO
=>ΔCIA đồng dạng với ΔCBO
=>góc CIA=góc CBO=góc OAB