Cho hình vẽ AB//CD, AD//BC,AD=BC,AB=DC chứng minh tam giác ABC=tam giác CDA cho góc D=60 độ.tính góc B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABH\)có:
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\)( đl tổng 3 góc của 1 tam giác)
hay \(\widehat{BAH}+60^o+90^o=180^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
b) Xét \(\Delta ABC\)và \(\Delta CDA\)có:
\(AB=CD\left(gt\right)\)
\(\widehat{BAC}=\widehat{ACD}\)( 2 góc slt)
\(AC\)cạnh chung
\(\Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{CAD}\)( 2 góc tương ứng)
c) Ta có: \(\widehat{ACB}=\widehat{CAD}\)( c/mt)
Mà 2 góc này nằm ở vị trí slt
\(\Rightarrow AD//BC\)
\(\Rightarrow\widehat{AHB}=\widehat{HAD}\)(2 góc slt)
Mà \(\widehat{AHB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{HAD}=90^o\)
Hay nói cách AD vuông góc AH( đpcm)
học tốt!!
a) Vì \(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
b) Do \(AB//CD\Rightarrow\widehat{BAC}=\widehat{ACD}\)(2 góc so le trong)
\(\Rightarrow\Delta ABC=\Delta CDA\left(cgc\right)\)vì\(\hept{\begin{cases}AB=CD\\\widehat{BAC}=\widehat{ACD}\\ACchung\end{cases}}\)
c) Vì \(\Delta ABC=\Delta CDA\Rightarrow\widehat{ACB}=\widehat{CAD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong của 2 đường thẳng AD và BC\(\Rightarrow AD//BC\)
Ta có \(AD//BC,AH\perp BC\Rightarrow AD\perp AH\)
b: Xét ΔABC vuông tại A và ΔCDA vuông tại C có
CA chung
AB=CD
Do đó: ΔABC=ΔCDA
Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
SUy ra: AD//BC
c: Xét ΔAHB vuông tại H và ΔCKD vuông tại K có
AB=CD
\(\widehat{ABH}=\widehat{CDK}\)
Do đó: ΔAHB=ΔCKD
Suy ra: BH=DK
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
b: AB=AC
DB=DC
Do đó: AD là trung trực của BC
=>AD vuông góc BC tại trung điểm của BC
=>I là trung điểm của BC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔAIB=ΔAIC
c: AD là trung trực của BC
=>AD vuông góc BC tại I và I là trung điểm của BC
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Xét ΔBED và ΔBEC có
BD=BC(gt)
\(\widehat{DBE}=\widehat{CBE}\)(BE là tia phân giác của \(\widehat{DBC}\))
BE chung
Do đó: ΔBED=ΔBEC(c-g-c)
Xét ΔBDI và ΔBCI có
BD=BC(gt)
\(\widehat{DBI}=\widehat{CBI}\)(BI là tia phân giác của \(\widehat{DBC}\))
BI chung
Do đó: ΔBDI=ΔBCI(c-g-c)
⇒ID=IC(hai cạnh tương ứng)
b) Sửa đề: Chứng minh AH//BI
Xét ΔBDC có BD=BC(gt)
nên ΔBDC cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBDC cân tại B(cmt)
mà BI là đường phân giác ứng với cạnh đáy DC(gt)
nên BI là đường cao ứng với cạnh DC(Định lí tam giác cân)
⇒BI⊥DC
Ta có: AH⊥DC(gt)
BI⊥DC(cmt)
Do đó: AH//BI(Định lí 1 từ vuông góc tới song song)