K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lấy D sao cho M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AB=DC; AB//DC

=>CD<AC; góc BAD=góc CDA

CD<AC nên góc DAC<góc ADC

=>góc DAC<góc BAD

3 tháng 2 2020

K B M C A 1 2

Trên tia AM lấy điểm K sao cho AM = KM

Xét hai tam giác \(\Delta AMC\)và \(\Delta KMB\), ta có :

AM = KM

\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)

CM = BM (vì M là trung điểm của BC)

Do đó : \(\Delta AMC=\Delta KMB\Rightarrow\widehat{CAM}=\widehat{BKM}\)

BK = AC > AB

Khi đó,trong \(\Delta ABK\)vì :

BK > AB => \(\widehat{BAK}>\widehat{BKA}\)=> \(\widehat{BAM}>\widehat{CAM}\).

1 tháng 3 2018

bạn chép sai đề à

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giácBài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giácBài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BCBài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng: 
   a) Góc AMB < góc AMC
   b) Góc MAB > góc CAM
   c) Góc ADB < góc ADC
   d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
   a) BC > CE; CE ⊥ AC
   b) Góc ABM > góc MBC

0
19 tháng 3 2016

Câu a : làm theo bài này do mk làm .

Câu hỏi của Cấn Ngọc anh - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

Câu b : no bt

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hbh

=>AB=CD

b: ABDC là hbh

=>AB//CD

AB=CD

AB<AC

=>CD<AC

=>góc CAD<góc CDA

=>góc CAD<góc BAD

17 tháng 3 2016

A B C M I 1 2

Trên tia  \(AM\)  của tam giác \(ABC\) lấy điểm \(I\)  sao cho  \(AM=IM\)

Ta có:  \(AM=IM\)  (theo giả thiết)

      góc  \(M_1\)  \(=\)  góc  \(M_2\) (đối đỉnh)

          \(MC=MB\)  (do  \(M\)  là trung điểm của  \(BC\))

nên  \(\Delta AMC=\Delta IMB\)  \(\left(cgc\right)\)

suy ra  góc  \(MAC\)  \(=\)  góc  \(MIB\)  (hai góc tương ứng)

Do đó,  \(BI=AC>AB\)

Khi đó, xét  \(\Delta ABI\)  có   \(BI>AB\)  

nên  góc  \(BAI\)  \(>\)  góc  \(BIA\)

\(\Leftrightarrow\)  góc  \(BAM\)   \(>\)  góc  \(MAC\)

10 tháng 2 2017

ấn đúng 0

đáp án và lời giải sẽ hiện ra trước mắt

Kết quả hình ảnh cho online math