Bài 4: Cho tam giác ABC có AB>AC, M là trung diểm cạnh BC. So sánh các góc BAM và CAM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K B M C A 1 2
Trên tia AM lấy điểm K sao cho AM = KM
Xét hai tam giác \(\Delta AMC\)và \(\Delta KMB\), ta có :
AM = KM
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM (vì M là trung điểm của BC)
Do đó : \(\Delta AMC=\Delta KMB\Rightarrow\widehat{CAM}=\widehat{BKM}\)
BK = AC > AB
Khi đó,trong \(\Delta ABK\)vì :
BK > AB => \(\widehat{BAK}>\widehat{BKA}\)=> \(\widehat{BAM}>\widehat{CAM}\).
Câu a : làm theo bài này do mk làm .
Câu hỏi của Cấn Ngọc anh - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Câu b : no bt
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB=CD
b: ABDC là hbh
=>AB//CD
AB=CD
AB<AC
=>CD<AC
=>góc CAD<góc CDA
=>góc CAD<góc BAD
A B C M I 1 2
Trên tia \(AM\) của tam giác \(ABC\) lấy điểm \(I\) sao cho \(AM=IM\)
Ta có: \(AM=IM\) (theo giả thiết)
góc \(M_1\) \(=\) góc \(M_2\) (đối đỉnh)
\(MC=MB\) (do \(M\) là trung điểm của \(BC\))
nên \(\Delta AMC=\Delta IMB\) \(\left(cgc\right)\)
suy ra góc \(MAC\) \(=\) góc \(MIB\) (hai góc tương ứng)
Do đó, \(BI=AC>AB\)
Khi đó, xét \(\Delta ABI\) có \(BI>AB\)
nên góc \(BAI\) \(>\) góc \(BIA\)
\(\Leftrightarrow\) góc \(BAM\) \(>\) góc \(MAC\)
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB=DC; AB//DC
=>CD<AC; góc BAD=góc CDA
CD<AC nên góc DAC<góc ADC
=>góc DAC<góc BAD