Cho tam giác ABC có diện tích là 1200cm2 trên cạnh AB lấy điểm N, trên cạnh AC lấy điểm M sao cho BN bằng 1/3 AB và AM bằng MC. Nối BM với CN cắt nhau tại O. Tính diện tích BOC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác CMB và tam giác CAB có :
+ chung chiều cao hạ từ đỉnh C .
+ đáy BM = 1/3 đáy BA .
=> S tam giác CMB = 1/3 S tam giác CAB . 1
xét tam giác BNC và tam giác BAC có :
+ chung chiều cao hạ từ đỉnh B .
+ đáy NC = 1/3 đáy AC ( vì CN=1/3 AC )
=> S tam giác BNC = 1/3 S tam giác BAC. 2
TỪ 1 VÀ 2 => S TAM GIÁC CMB = S TAM GIÁC BNC .
TA THẤY S TAM GIÁC CMB VÀ S TAM GIÁC BNC ĐỀU CÓ CHUNG S TAM GIÁC BOC => PHẦN CÒN LÀI CỦA 2 HÌNH TAM GIÁC = NHAU.
=> OMB = ONC
Nối A với I :
Ta có : S ( AMI ) = 1/2 S ( BMI ) ( vì đáy AM = 1/2 đáy BM ; chung chiều cao hạ từ I xuống AB )
S ( ANI ) = 1/2 S ( CNI )
Mà S ( CNI ) = S ( BMI ) nên S ( AMI ) = S ( ANI ) = 90 : 2 = 45 cm2
\(\Rightarrow\) S ( AIB ) = 3 x S ( AMI ) = 3 x 45 = 135 cm2
\(\Rightarrow\) S ( ABN ) = S ( AIB ) + S ( AIN ) = 135 + 45 = 180 cm2
\(\Rightarrow\) S ( ABC ) = 3 x S ( ABN ) = 3 x 180 = 540 cm2
Hai tam giác ACM và tg BCM có chung đường cao từ C->AB nên
\(\dfrac{S_{ACM}}{S_{BCM}}=\dfrac{AM}{BM}=1\Rightarrow S_{ACM}=S_{BCM}=\dfrac{S_{ABC}}{2}=\dfrac{70}{2}=35cm^2\)
Hai tg BCN và tg ABN có chung đường cao từ B->AC nên
\(\dfrac{S_{BCN}}{S_{ABN}}=\dfrac{CN}{NA}=\dfrac{2}{3}\) mà \(S_{BCN}+S_{ABN}=S_{ABC}=70cm^2\)
\(\Rightarrow S_{BCN}=2x\dfrac{S_{ABC}}{2+3}=2x\dfrac{70}{5}=28cm^2\)
\(\Rightarrow S_{ABN}=S_{ABC}-S_{BCN}=70-28=42cm^2\)
Hai tg AMN và tg BMN có chung đường cao từ N->AB nên
\(\dfrac{S_{AMN}}{S_{BMN}}=\dfrac{AM}{BM}=1\Rightarrow S_{AMN}=S_{BMN}=\dfrac{S_{ABN}}{2}=\dfrac{42}{2}=21cm^2\)
Hai tam giác BMN và tam giác BCN có chung BN nên
\(\dfrac{S_{BMN}}{S_{BCN}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{21}{28}=\dfrac{3}{4}\)
Hai tg BOM và tam giác BOC có chung BO nên
\(\dfrac{S_{BOM}}{S_{BOC}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{3}{4}\)
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=28cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCN}}{4+3}=4x\dfrac{28}{7}=16cm^2\)
Sorry!
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=35cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCM}}{4+3}=4x\dfrac{35}{7}=20cm^2\)