A=1.2+2.3+3.4+...+2016.2017
B=1.3+2.4+3.5+...+2016.2018
Tìm A-B
Giúp mình nha mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
dãy trên có số chữ số là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 18339,1 chữ số
tổng là:
( 2016,2017 + 2,1 ) x 18339,1 : 2 = 18560918,35
b)
dãy trên có số chữ số là:
( 2016,2018 - 1,3 ) : 1,1 + 1 = 1832,73
tổng là:
( 2016,2018 + 1,3 ) x 1832,73 : 2 = 1848768,04
a)
dãy trên có số chữ số là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 18339,1 chữ số
tổng là:
( 2016,2017 + 2,1 ) x 18339,1 : 2 = 18560918,35
đáp số: 18560918,35
b)
dãy trên có số chữ số là:
( 2016,2018 - 1,3 ) : 1,1 + 1 = 1832,73 chữ số
tổng là:
( 2016,2018 + 1,3 ) x 1832,73 : 2 = 1848768,04
đáp số: 1848768,04
-----oOo-----
Ghi nhớ công thức tính dãy số cách đều
B1: tính số chữ số:
( số cuối - số đầu ) : khoảng cách + 1 = ... chữ số
B2: tính tổng:
( số đầu + số cuối ) x số chữ số : 2
chúc bạn học giỏi
Ta có :
A = 1.2+2.3+3.4+4.5+...+100.101
B = 1.3+2.4+3.5+4.6+....+100.102
=> B - A = ( 1.2+2.3+3.4+4.5+...+100.101) - (1.3+2.4+3.5+4.6+...+100.102)
=> B - A = 1.2+2.3+3.4+4.5+...+100.101-1.3-2.4-3.5-4.6-....-100.102
=> B - A = 1.2+(2.3-1.3)+(3.4-2.4)+(4.5-3.5)+...+(100.101-99.101)-100.102
=> B - A = 2+3+4+5+...+101-10200
=> B - A = (2+101)+(3+100)+...+(51+52)-10200
=> B - A = 103+103+103+....+103-10200 ( 50 SỐ 103 )
=> B - A = 103.50-10200
=> B - A = 5150-10200
=> B - A = -5050
Cách làm đúng nhưng bạn lấy nhầm A-B thay vì B-A rồi, kết quả là 5050 mới đúng
Đề bài của bạn sai ở chỗ 99.101 nha, phải là 99.100
a) A = 1.2 + 2.3 + 3.4 + ... + 99.100
=>3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
=>3A = 1.2(3-0) + 2.3(4-1) + 3.4(5-2) + ... + 98.99(100 - 97) + 99.100(101 - 98)
=>3A = 1.2.3 - 0.1.2. + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
=> 3A = 0.1.2 + 99.100.101 = 99.100.101
=> A = (99.100.101) : 3
Ta có 3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+100.101.102-99.100.101
\(\Rightarrow\)3A=100.101.102
\(\Rightarrow\)A=343400
B=1.2+1+2.3+1+3.4+1+...+100.101+100
\(\Rightarrow\)B=1.2+2.3+3.4+...+100.101+[1+2+3+..+100]
Mặt khác 1.2+2.3+3.4+4.5+...+100.101=A
\(\Rightarrow\)B=343400+101.100:2=348450
Ta có : A = 1.2 + 2.3 + 3.4 + ...... + 100.101
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102
=> 3A = 100.101.102
=> A = 100.101.102/3
=> A = 343400
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)
A)
dãy trên có số số hạng là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 18339,1 chữ số
A là:
( 2016,2017 + 1,2 ) x 18339,1 : 2 = 18560918,35
B)
dãy trên có số số hạng là:
( 2016,2018 - 1,3 ) : 1,1 + 1 = 1832,73 chữ số
B là:
( 2016,2018 + 1,3 ) x 1832,73 : 2 = 1848768,04