K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

Ta có \(0< a< \dfrac{\Pi}{2}\)

=>Điểm đầu và cuối của a thuộc góc phần tư thứ nhất

=> sin a > 0 và cos a >0

Có \(cos^2a+sin^2a=1\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^2+sin^2a=1\)\(\Rightarrow sin^2a=\dfrac{16}{25}\)

\(\Rightarrow sina=\dfrac{4}{5}\)

\(sin2a=2sinacosa=2.\dfrac{4}{5}.\dfrac{3}{5}=\dfrac{24}{5}\)

2 tháng 1 2020

Chọn A.

Ta có 

Thay  vào P ta được P = 4.

5 tháng 8 2017

Ta có: \(sin^2a+cos^2a=1\)

\(\Rightarrow cos^2a=1-sin^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)

\(\Rightarrow cosa=\dfrac{4}{5}\)(vì \(0^o\le a\le90^o\))

29 tháng 10 2016

Ta có \(\sin A=1,4-\cos A\)

Thế vào \(\sin^2A+\cos^2A=1\)ta được

\(25\cos^2A-35\cos A+12=0\)

\(\Leftrightarrow\orbr{\begin{cases}\cos A=0,8\\\cos A=0,6\end{cases}\Rightarrow\orbr{\begin{cases}\sin A=0,6\\\sin A=0,8\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\cot A=\frac{4}{3}\\\cot A=\frac{3}{5}\end{cases}}\)

29 tháng 10 2016

giả sử tam giác ABC vuông tại A

đặt Ab=c; AC=b; BC=a, \(\widehat{B}\)=A

ta có:

\(sinA+cosA=\frac{b}{a}+\frac{c}{a}=\frac{b+c}{a}=\frac{7}{5}\)

=>b+c=7

=>(b+c)2=b2+2bc+c2=49

=>\(sin^2A+cos^2A=\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=\frac{25}{25}\)

=>b2+c2=25

ta có:

(b+c)2-b2-c2=49-25

2bc=24

bc=12

ta có: b.c=12; b+c=7

=> 3.4=4.3=1.12=12.1=2.6=6.2

mà b+c=7=> b=4,c=3 hoặc b=3,c=4

=> cot A= 4/3 hoặc 3/4

Bài 2: 

\(\cos\alpha=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}\)

\(\tan\alpha=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\cot\alpha=\dfrac{\sqrt{5}}{2}\)

6 tháng 4 2019

Chọn A.

Áp dụng định lí cosin trong tam giác ta có:

a2 = b2 + c2 = 2bc.cosA = 72 + 52 - 2.7.5.3/5 = 32

Nên 

Mặt khác: sin2A + cos2A = 1 nên sin2A = 1 - cos2A = 16/25

Mà sinA > 0 nên  sinA = 4/5

Mà: