tìm số tự nhiên có 2 chữ số biết rằng số đó gấp 3 lần tổng các chữ số của nó .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72
<a+b>* 3= ab
<a+b > *3 =a*10 +b
a*3+b*3 = a*10 +b
b*2 = a* 7
vậy a= 2 , b = 7
Gọi số đó là:ab
ab = 3 x (a+b)
10a + b = 3a + 3b
7 x a = 2 x b
Vậy ab = 27
Gọi số cần tìm là ab [a khác 0 ; a,b là chữ số]
Vì số đó gấp 3 lần tổng các chữ số của nó nên :
ab = 3 x [a+b]
=> 10 x a +b = 3 x a + 3 x b
=> 7 x a = 2 x b => 3,5 x a = b
Với a = 1 thì b= 3,5 [loại]
Với a= 2 thì b= 7 [chọn ] => ab = 27
Với a \(\ge\)3 thì b > 9 [loại]
Vậy số cần tìm là 27
Gọi số cần tìm là ab ( a, b khác 0 )
Vì nó gấp 3 lần tổng các chữ số của nó nên :
ab = 3 x ( a + b)
=> 10 x a + b = 3 x a + 3 x b
=> 7 x a = 2 x b => 3,5 x a = b
Với a = 1 thì b = 3,5 ( loại)
Với a = 2 thì b = 7 ( chọn ) => ab = 27
Với a > 3 thì b > 7 ( loại )
Vậy số cần tìm là 27
Gọi sốc ần tìm là ab
Vì số đó gấp 3 lần tổng các chữ số của nó nên :
ab = 3 x ( a x b )
=> 10 x a + b = 3 x a + 3 x b
=> 7 x a = 2 x b => 3,5 x a = b
Với a = 1 thì b = 3,5 ( loại )
Với a = 2 thì b = 7 ( chọn ) => ab = 27
Với a \(\ge\)3 thì b = 9 ( loại )
Vậy số cần tìm ( ab ) = 27
Ai thấy đúng thì tk mình nha
gọi số đó là \(\overline{xyz}\)
ta có : \(\overline{xyz}=20\times\left(x+y+z\right)\\ x\times100+y\times10+z=20\times x+20\times y+20\times z\\ x\times80=10\times y+19\times z\)
\(x\times80\) có chữ số tận cùng là 0 ; \(10\times y;19\times z\) cũng phải có tận cùng là 0
mà \(z\) là số có 1 chư số nên z=0
\(\Rightarrow x\times80=10\times y\\ \Rightarrow x=1;y=8\)
vậy.........
Gọi số đó là ab. (0<a; b <10). Ta có:
1/ Gấp 7 lần: <=> ab=7(a+b) <=> 10a+b=7(a+b) <=> 10a+b=7a+7b
<=> 3a=6b => a=2b => b=1; 2; 3; 4 và a=2; 4; 6; 8
Các số cần tìm là: 21; 42; 63; 84
2/ Gấp 6 lần: <=> ab=6(a+b) <=> 10a+b=6(a+b) <=> 10a+b=6a+6b
<=> 4a=5b => \(a=\frac{5b}{4}\) => b=4 và a=5
Các số cần tìm là: 45
3/ Gấp 6 lần: <=> ab=8(a+b) <=> 10a+b=8(a+b) <=> 10a+b=8a+8b
<=> 2a=7b => \(a=\frac{7b}{2}\) => b=2 và a=7
Các số cần tìm là: 72
4/ Gấp 9 lần: <=> ab=6(a+b) <=> 10a+b=9(a+b) <=> 10a+b=9a+9b
<=> a=8b => b=1 và a=8
Các số cần tìm là: 81
Gọi số đó là \(\overline{ab}\left(a,b< 10;a,b\in N\right)\)
Ta có \(\overline{ab}=2\left(a+b\right)\)
\(\Leftrightarrow10a+b=2a+2b\\ \Leftrightarrow8a=b\)
Vì a,b là các số tự nhiên nhỏ hơn 10 nên \(\left\{{}\begin{matrix}a=1\\b=8\end{matrix}\right.\)
Do đó số cần tìm là \(18\)
27
27
27
27
27
27
27
27
27
27 nhé