tính tổng sau:
A=1/6+1/12+1/20+...+1/72=1/90
giải giùm mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
refer
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
9 –[1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
9 – (1 – 1/10) = 9 – 9/10 = 81/10
Đặt S=1/6+1/12+1/20+1/30+1/42+1/56+1/72
=> S=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=> S=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
=> S=1/2-1/9
=> S=7/18
Vì 7/18<1/2
=> S<1/2
Mọi người k mik nhé, :)))
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8-1/9
= 1/2 - 1/9
= 7/18
Bn tự so sánh vs 1/2 nha
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{1.9}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=1-\frac{1}{9}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-\frac{1}{5}+\frac{1}{6}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(=0\)
8/9 - 1/72 - 1/56 - ... - 1/6 - 1/2
= 8/9 - [1/8*9 + 1/7*8 + ... + 1/2*3 + 1/1*2]
= 8/9 - [1/8 - 1/9 + 1/7 - 1/8 + ...+ 1/2 - 1/3 + 1 - 1/2]
= 8/9 - [-1/9 + 1]
= 8/9 - 8/9
= 0
Mk bik câu B nè!
2B = 2/3.5 + 2/5.7 + 2/7.9 +.......+2/97.99
2B = 1/3 - 1/5 + 1/5 - 1/7 +.......+ 1/97 - 1/99
2B = 1/3 - 1/99
2B = 32/99
=> B = 16/99
Phạm Tùng Sơn
Tính nhanh:
1/20 + 1/12 + 1/6 + 1/2 + 1
= 1 + ( 1/20 + 1/2 ) + ( 1/12 + 1/6 )
= 1 + ( 1/20 + 10/20 ) + ( 1/12 + 2/12)
= 1 + 11/20 + 3/12
= ( 1 + 11/20 ) + 1/4
= 20/20 + 11/20 + 5/20
= 36/20 = 9/5
^^ Học tốt nhé!
\(\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}+1\)
\(=1+\left(\frac{1}{20}+\frac{10}{20}\right)+\left(\frac{1}{12}+\frac{2}{12}\right)\)
\(=1+\frac{11}{20}+\frac{3}{12}\)
\(=\left(1+\frac{11}{20}\right)+\frac{1}{4}\)
\(=\frac{20}{20}+\frac{11}{20}+\frac{5}{20}\)
\(=\frac{9}{5}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...........+\frac{1}{49.50}+\frac{1}{50.51}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
= \(1-\frac{1}{51}=\frac{50}{51}\)
a.A=-1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/72=-151/180
Vậy A=151/180
b.B=0,5+0,4+1/3+1/6+5/7-4/35=2
Vậy B=2
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
=\(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
=\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
=\(\frac{1}{5}-\frac{1}{12}=\frac{12}{60}-\frac{5}{60}=\frac{7}{60}\)
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
= \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
=\(\frac{1}{5}-\frac{1}{12}\)
=\(\frac{7}{60}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}=\frac{1}{9.10}\)
tới đây chắc bạn giải đc rồi ha!
nếu k biết cứ nhắn hỏi mình
bn giải giùm mình ghi các bước ra nha