Tìm Max B=x3 (2-x5)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HP
26 tháng 12 2015
X1+X2=X3+X4=X5+X6=2
nên X1+X2+X3+X4+X5+X6=0
2+2+2=0
6=0(loại)
vậy không có giá trị nào thỏa mãn đề
22 tháng 8 2017
Đặt \(\frac{x_1-1}{5}=\frac{x_2-2}{4}=\frac{x_3-3}{3}=\frac{x_4-4}{2}=\frac{x_5-5}{1}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\frac{x_1+x_2+x_3+x_4+x_5-15}{15}=\frac{30-15}{15}=1\)
\(\frac{x_1-1}{5}=1\Rightarrow x_1=6;\frac{x_2-2}{4}=1\Rightarrow x_2=6;\frac{x_3-3}{3}=1\Rightarrow x_3=6;\frac{x_4-4}{2}=1\Rightarrow x_4=6;\frac{x^5-5}{2}=1\Rightarrow x_5=6\)
Vậy \(x_1=x_2=x_3=x_4=x_5=6\)
ta có \(B=\sqrt[5]{x^{15}.\left(2-x^5\right)^5}=\sqrt[5]{x^5.x^5.x^5\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right)}\)
\(\Leftrightarrow B=\sqrt[5]{\left(\frac{3}{5}\right)^3.\frac{5}{3}x^5.\frac{5}{3}x^5.\frac{5}{3}x^5\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right)}\)
\(\le\sqrt[5]{\left(\frac{3}{5}\right)^3.\left(\frac{5x^5+5\left(2-x^5\right)}{8}\right)^8}=\sqrt[5]{\left(\frac{3}{5}\right)^3.\left(\frac{5}{4}\right)^8}\)
Dâu bằng xảy ra khi \(\frac{5}{3}x^5=2-x^5\Leftrightarrow x=\sqrt[5]{\frac{3}{4}}\)