Tính :
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{100}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)
\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)
\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)
a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
a) =3/2 . 4/3 . 5/4 ...100/99
=\(\frac{3.4.5...100}{2.3.4..99}\)
=\(\frac{100}{2}\)
b) =
a/ \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)=\frac{3}{2}\times\frac{4}{3}\times....\times\frac{101}{100}=\frac{101}{2}\)
b/ Tự chép đề nha\(B=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)....\left(1-\frac{1}{100}\right)\left(1+\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{3}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{99}{100}\times\frac{101}{100}=\frac{1}{2}\times\frac{101}{100}=\frac{101}{200}\)
Đề a) (1+1/2) (1+1/3) (1+1/4)...(1+1/100)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)....\left(1+\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{4}{3}....\frac{101}{100}=\frac{3.4...101}{2.3...100}=\frac{101}{2}\)
Học tốt
Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)
Áp dụng , đặt biểu thức cần tính là A , ta có :
\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)
\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)
Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0
làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc
ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)
=>biểu thức ấy =0
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)
\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)
\(=\frac{-1}{100}\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5.....100}{2.3.4.....99}\)
\(=\frac{100}{2}=50\)
A=\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{100}+1\right)\)
A=\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{101}{100}\)
=> A=\(\frac{101}{2}\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{101}{100}=\frac{101}{2}\)
A= (1/4-1)(1/9-1).......(1/10000-1)
A=-3/4(-8/9).........(-9999/100^2)
A=-1.3/2.2 (-2.4/3.3)........(-99.101/100.100)
A=-1.(-2).(-3)........(-99)/2.3.4......100 . 2.3.4......101/.3.4....100
A=-1/100 . 102/3=17/50
Vậy A= 17/50
đơn giản mà. chỉ cần tính hiệu của 2 số trong dấu ngoặc rồi nhân các kết quả tìm được với nhau và rút gọn
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)