Chứng minh B=36/1.3.5+36/3.5.7+36/5.7.9+...+36/25.27.29<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 9 . [ 4/1.3.5+4/3.5.7+4/5.7.9+...+4/25.27.29]
B = 9 . [ 1/3-1/783]
= 9 . [ 1/3-1/783]
= 9 . 260/783=260/87<261/87<3
Áp dụng: \(\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}\)
\(\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}\)
\(\Rightarrow B<3\)
Ta có :
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+.............+\dfrac{36}{25.27.29}\)
\(B=9\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+...........+\dfrac{4}{25.27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+.............+\dfrac{1}{25.27}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\)
\(B=9.\dfrac{1}{3}-9.\dfrac{1}{783}\)
\(B=3-\dfrac{9}{783}< 3\)
\(\Rightarrow B< 3\rightarrowđpcm\)
chứng tỏ rằng : A=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+....+\frac{36}{25.27.29}< 3\)
Ta có:
\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)
\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)
\(\Rightarrow A=3-\frac{1}{87}\)
Vì \(3-\frac{1}{87}< 3.\)
\(\Rightarrow A< 3\left(đpcm\right).\)
Chúc bạn học tốt!