Tìm số dư của B = 32005 + 42005 khi chia cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
4:
\(54=3^3\cdot2;135=3^3\cdot5\)
=>\(ƯCLN\left(54;135\right)=3^3=27\)
Để có thể chia 54 bác sĩ và 135 y tá vào thành các tổ sao cho số bác sĩ và số y tá ở các tổ bằng nhau thì số tổ phải là ước chung của 54 và 135
=>Số tổ lớn nhất sẽ là ước chung lớn nhất của 54 và 135
=>Số tổ nhiều nhất có thể chia được là 27 tổ
5:
a: \(B=1+3^1+3^2+...+3^{2005}\)
\(=4+3^2+3^3+3^4+...+3^{2003}+3^{2004}+3^{2005}\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{2003}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{2003}\right)\)
=>B chia 13 dư 4
câu b phải là 7 chứ bạn
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Gọi so can tim la x
Theo bài ra ta có
x = 7a + 5 va x= 13b + 4
Ta lại có x + 9 = 7a + 14 = 13b + 13
-> x + 9 chia hết cho 7 và 13
-> x + 9 chia hết cho 7.13 = 91
-> x + 9 = 91m -> x = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy x chia 91 dư 82
Đáp án cần chọn là: A
Vì a chia cho 8 dư 6⇒(a+2)⋮8
a chia cho 12 dư 10 ⇒(a+2)⋮12
Do đó (a+2)∈BC(12;8) mà BCNN(12,8)=24.
Do đó (a+2)⋮24⇒a chia cho 24 dư 22
GỌI SỐ TỰ NHIÊN CHIA CHO 7 DƯ 3, CHO 17 DƯ 12, CHO 23 DƯ 7 LÀ a
THEO BÀI RA, TA CÓ: \(a=7q+3=17p+12=23y+7\)( TRONG ĐÓ \(q,p,y\)LÀ THƯƠNG CỦA CÁC PHÉP CHIA)
\(\Rightarrow a+39=7q+42=7\cdot\left(q+6\right)\left(1\right)\)
\(a+39=17p+51=17\cdot\left(p+3\right)\left(2\right)\)
\(a+39=23y+46=23\cdot\left(y+2\right)\left(3\right)\)
TỪ\(\left(1\right),\left(2\right)\&\left(3\right)\Rightarrow a+39\in BC\left(7;17;23\right)\)
TA CÓ: \(7=7;17=17;23=23\)
\(\Rightarrow BCNN\left(7;17;23\right)=7\cdot17\cdot23=2737\)
DO ĐÓ: \(a+39=2737k\left(k\in N\right)\)
\(\Leftrightarrow a=2737k-39\)
\(\Leftrightarrow a=2737\cdot\left(k-1\right)-2698\)
VẬY PHÉP CHIA a CHO 2737 CÓ SỐ DƯ LÀ 2698