Tìm số tự nhiên có 4 chữ số biết rằng; khi viết thêm chữ số 5 vào bên phải số đó ta được một số gấp 5 lần số nhân được. khi viết thêm chữ số 1 vào bên trái số cần tìm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi hai số tự nhiên cần tìm là a,b
Số thứ nhất gấp 4 lần số thứ hai nên a=4b(1)
Tổng của hai số là 100 nên a+b=100(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a=4b\\a+b=100\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4b+b=100\\a=4b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=100\\a=4b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=\dfrac{100}{5}=20\\a=4\cdot20=80\end{matrix}\right.\)
Bài 2:
Gọi hai số cần tìm là a,b
Hiệu của hai số là 10 nên a-b=10(4)
Hai lần số thứ nhất bằng ba lần số thứ hai nên 2a=3b(3)
Từ (3) và (4) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=10\\2a=3b\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=10\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b=20\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b-2a+3b=20\\2a=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\2a=3\cdot20=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)
Bài 3:
Gọi số tự nhiên cần tìm có dạng là \(\overline{ab}\left(a\ne0\right)\)
Chữ số hàng chục bé hơn chữ số hàng đơn vị là 3 nên b-a=3(5)
Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới lập ra và số ban đầu là 77 nên ta có:
\(\overline{ab}+\overline{ba}=77\)
=>\(10a+b+10b+a=77\)
=>11a+11b=77
=>a+b=7(6)
Từ (5) và (6) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=5\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a+b+a+b=5+7\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2b=12\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6\\a=7-6=1\end{matrix}\right.\)
Vậy: Số tự nhiên cần tìm là 16
A là STN nhỏ nhất có 2 chữ số suy ra A = 10
B là STN lớn nhất có 3 chữ số suy ra B = 999
C là STN nhỏ nhất có 4 chữ số suy ra C = 1000
10=2.5
999= 3 mũ 2 . 111
1000= 10 mũ 3
BCNN( 10, 100,999)= 2.5.3 mũ 2.111. 10 mũ 3= 9990000
Bài 2 : Nếu xóa đi chữ số hàng nghìn thì được số mới kém số cũ 1000 đơn vị.
Ta có sơ đồ:
Số cũ: l-----l-----l-----l-----l-----l-----l-----l-----l-----l
1000 đơn vị( 8 phần )
Số mới:l-----l
Số cần tìm ( số cũ ) là : 1000 : ( 9 - 1 ) x 9 = 1125
( bài 1 bạn xem lại đề )
abc là số phải tìm abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp: (1)
Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2 Vậy a = 2, b = 5, c = 0
Số phải tìm là 250 (2)
Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là: 250, 125, 375
Gọi số có 6 chữ số phân biệt là \(\overline {abcdef} \).
Chữ số 4 có giá trị bằng 4 000 nên số 4 ở vị trí c. Số cần tìm là \(\overline {ab4def} \)
Vì hai chữ số cạnh nhau luôn là hai số tự nhiên liên tiếp nên số b, 4 và d là 3 số tự nhiên liên tiếp. Do đó, \(\overline {b4d} \) có thể là 345 hoặc 543.
+ Nếu \(\overline {b4d} \) là 345 thì a=2, e=6, f=7. Ta được n = 234 567.
+ Nếu \(\overline {b4d} \) là 543 thì a=6, e=2, f=1. Ta được n = 654 321.
Vậy tìm được 2 số là 234 567 và 654 321.
Bài 1:
*Gọi số cần tìm là ¯¯¯¯¯¯x3x3¯
*Ta có:
¯¯¯¯¯¯x3−x=1992x3¯−x=1992
10x+3−x=199210x+3−x=1992
10x−x+3=199210x−x+3=1992
9x+3=19929x+3=1992
9x=1992−39x=1992−3
9x=19899x=1989
x=221x=221
\Rightarrow ¯¯¯¯¯¯x3=2213x3¯=2213
*Vậy số cần tìm là 22132213
Bài 2:
*Gọi số cần tìm là ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯abcde4abcde4¯
*Theo đề bài, ta có:
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯abcde4.4=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯4abcdeabcde4¯.4=4abcde¯
(100000a+10000b+1000c+100d+10e+4).4=400000+10000a+1000b+100c+10d+e(100000a+10000b+1000c+100d+10e+4).4=400000+10000a+1000b+100c+10d+e
400000a+40000b+40000c+4000d+400c+40e+16=400000+10000a+1000b+100c+10d+e400000a+40000b+40000c+4000d+400c+40e+16=400000+10000a+1000b+100c+10d+e
(400000a−10000a)+(40000b−4000b)+(4000c−100c)+(400d−10d)+(40e−e)=400000−16(400000a−10000a)+(40000b−4000b)+(4000c−100c)+(400d−10d)+(40e−e)=400000−16
390000a+39000b+3900d+390c+39e=399984390000a+39000b+3900d+390c+39e=399984
39.(10000a+1000b+100c+10d+e)=39998439.(10000a+1000b+100c+10d+e)=399984
39.abcde=39998439.abcde¯=399984
e=399984:39abcde¯=399984:39
4abcde=102564abcde¯=10256
*Vậy số cần tìm là 102564
Bài 2 : Tìm số tự nhiên có 6 chữ số , biết rằng chữ số hàng đơn vị là 4 và nếu , chuyển chữ số đó nên hàng đầu thì số đó tăng gấp 4 lần
Ta gọi số tự nhiên cần tìm là x.10+3
Ta đã bỏ đi 9x+3=1992
\Rightarrow/ x=221
số cần tìm là 2213
Gọi số cần tìm là abcd. Xóa chữ số hàng chục và hàng đơn vị ta được số ab.
Theo đề bài, ta có:
abcd - ab = 4455
100 x ab + cd - ab = 4455
ad + 100 x ab - ab = 4455
cd + 99 x ab = 4455
cd = 99 x ( 45 - ab )
Ta nhận xét tích của 99 với một số tự nhiên là 1 số tự nhiên nhỏ hơn 100. Cho nên 45 - ab phải = 0 hoặc 1.
Nếu 45 - ab = 0 thì ab = 45 và cd = 0
Nếu 45 - ab = 1 thì ab = 44 và cd = 99
=> Số cần phải tìm là 4500 hoặc 4499
Theo đề bài ra, ta có:
ab = 5 x ( a + b )
Vì 5 x (a+b) có tận cùng bằng 0 hoặc 5 nên b = 0 hoặc = 5
nếu b = 0, thay vào ta có:
a5 = 5 x (a+5)
10 x a + 5 = 5 x a + 25
tính ra được a = 4
thử lại: 45 : (4+5) = 5.
=> số đó là 45
tìm số tự nhiên có 5 chữ số.Viết thêm chữ số 2 vào đằng sau thì được số lớn gấp 3 lần số có được. Bằng cách viết thêm chữ số 2 vào đằng trước.
Bài giải
1.Số thứ nhất :Ta thấy :giữa chúng có 100 số tự nhiên khác . Vậy hiệu hai số là:100.
Số thứ nhất là:(2009-100-1):2=954 ; Số thứ hai là:2009-954+1=1054