K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

`a in ZZ`

`=>6n-4 vdots 2n+1`

`=>3(2n+1)-7 vdots 2n+1`

`=>7 vdots 2n+1`

`=>2n+1 in Ư(7)={+-1,+-7}`

`=>2n in {0,-2,6,-8}`

`=>n in {0,-1,3,-4}`

`b in ZZ`

`=>3n+2 vdots 4n-4`

`=>12n+8 vdots 4n-4`

`=>3(4n-4)+20 vdots 4n-4`

`=>20 vdots 4n-4`

`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`

`=>4n-4 in {+-4,+-20}`

`=>n-1 in {+-1,+-5}`

`=>n in {0,2,6,-4}`

`c in ZZ`

`=>4n-1 vdots 3-2n`

`=>2(3-2n)-7 vdots 3-2n`

`=>7 vdots 3-2n`

`=>3-2n in Ư(7)={+-1,+-7}`

`=>2n in {4,0,-4,10}`

`=>n in {2,0,-2,5}`

23 tháng 6 2021

a) đk: \(n\ne\dfrac{-1}{2}\)

Để \(\dfrac{6n-4}{2n+1}\) nguyên

<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên

<=> \(3-\dfrac{7}{2n+1}\) nguyên

<=> \(7⋮2n+1\)

Ta có bảng 

2n+11-17-7
n0-13-4
 tmtmtmtm

 

b)đk: \(n\ne1\)

Để \(\dfrac{3n+2}{4n-4}\) nguyên

=> \(\dfrac{3n+2}{n-1}\) nguyên

<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên

<=> \(3+\dfrac{5}{n-1}\) nguyên

<=> \(5⋮n-1\)

Ta có bảng: 

n-11-15-5
n206-4
Thử lạitmloạitm

loại

 

c) đk: \(n\ne\dfrac{3}{2}\)

Để \(\dfrac{4n-1}{3-2n}\) nguyên

<=> \(\dfrac{4n-1}{2n-3}\) nguyên

<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên

<=> \(2+\dfrac{5}{2n-3}\) nguyên

<=> \(5⋮2n-3\)

Ta có bảng: 

2n-31-15-5
n214-1
 tmtmtmtm

 

a: Để A là phân số thì \(2n+4\ne0\)

=>\(2n\ne-4\)

=>\(n\ne-2\)

b: Thay n=0 vào A, ta được:

\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)

Thay n=-1 vào A, ta được:

\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)

Thay n=2 vào A, ta được:

\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)

c: Để A  nguyên thì \(3n-2⋮2n+4\)

=>\(6n-4⋮2n+4\)

=>\(6n+12-16⋮2n+4\)

=>\(-16⋮2n+4\)

=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)

=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)

10 tháng 8 2016

Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1

\(\Rightarrow3\left(4n+3\right)⋮3n+1\)

\(\Rightarrow12n+9⋮3n+1\)

\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)

\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)

\(\Rightarrow5⋮3n+1\)

\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)

+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )

+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )

+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )

+) \(3n+1=-5\Rightarrow n=-2\)

Vậy n = 0 hoặc n = -2

 

12 tháng 1

a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên 

b) \(\dfrac{n-2}{4}\) là một số nguyên khi:

\(n-2\) ⋮ 4

⇒ n - 2 ∈ B(4) 

⇒ n ∈ B(4) + 2

c) \(\dfrac{6}{n-1}\) là một số nguyên khi:

6 ⋮ n - 1

\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\) 

d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)

Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:

\(\Rightarrow\text{2}\) ⋮ n - 2

\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0\right\}\)

7 tháng 5 2020

tui chịu

7 tháng 5 2020

Đừng hỏi bài trên mạng nữa nếu ko cô  buồn lắm đấy

A nguyên thì 3n+4 chia hết cho 2n+1

=>6n+8 chia hết cho 2n+1

=>6n+3+5 chia hết cho 2n+1

=>\(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)