(2y-4)(3y+6)<0 tìm y plssssssssssssssss!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik viết lại đề bài !
Thu gọn đa thức :
\(x^3y^4-x^2y^2+y^6-5x^3y^4-6x^2y^2+3y^6-5x^2y^2+4y^6\\ =x^2y^4\left(1-5\right)-x^2y^2\left(1+6+5\right)+y^6\left(1+3+4\right)\\ =-4x^2y^4-12x^2y^2+8y^6\\ =4y^2\left(-x^2y^2-3x^2+2y^4\right)\)
A)\(5xyz.4x^2y^2.\left(-2x^3y\right)=\left(5.4.\left(-2\right)\right).\left(xx^2x^3\right).\left(yy^2y\right)=\left(-40\right)x^6y^4\)
- BẬC : 10
- HỆ SỐ: -40
B) \(-xy.\left(\frac{1}{2}x^3y^4\right).\left(\frac{-4}{7}x^2y^5\right)=\left(\frac{1}{2}.\frac{-4}{7}.\left(-1\right)\right).\left(xx^3x^2\right).\left(y^4y^5y\right)=\frac{2}{7}x^6y^{10}\)
- BẬC : 16
- HỆ SỐ: 2/7
C) \(\frac{5}{3}x^2y^4.\left(\frac{-6}{5}xy^3\right).\left(-xy\right)=\left(\frac{5}{3}.\frac{-6}{5}.\left(-1\right)\right).\left(x^2xx\right).\left(y^4y^3y\right)=2x^4y^8\)
- BẬC : 12
- HỆ SỐ : 2
D) \(\left(\frac{-1}{3}x^2y^5\right).\left(\frac{3}{4}xy\right).5x=\left(\frac{-1}{3}.\frac{3}{4}.5\right).\left(x^2xx\right).\left(y^5y\right)=\frac{-5}{4}x^4y^6\)
- BẬC : 10
- HỆ SỐ : -5 /4
CHÚC BN HỌC TỐT!!
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
a: \(=\dfrac{6}{3}\cdot x\cdot\dfrac{y^2}{y}=2xy\)
b: \(=\dfrac{62}{2}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=31xy\)
c: \(=\dfrac{-18}{6}\cdot\dfrac{x^4}{x^2}\cdot\dfrac{y^3}{y}=-3x^2y^2\)
d: \(=\dfrac{27}{9}\cdot\dfrac{x^5}{x^3}\cdot\dfrac{y^6}{y^3}=3x^2y^3\)
e: \(=\dfrac{18}{12}\cdot\dfrac{x^3}{x}\cdot\dfrac{y^4}{y^3}=\dfrac{3}{2}x^2y\)
A+B+C
\(=5x^2y^3-6xy^4+5x^3y-1+-x^3y-7x^2y^3+5-xy^4+2x^2y^3-7xy^4-6\)
\(=-14xy^4+4x^3y-2\)
A-B-C
\(=5x^2y^3-6xy^4+5x^3y-1+x^3y+7x^2y^3-5+xy^4-2x^2y^3+7xy^4+6\)
\(=10x^2y^3+2xy^4+6x^3y\)
\(\left(2y-4\right)\left(3y+6\right)< 0\\ =>\left\{{}\begin{matrix}2y-4>0\\3y+6< 0\end{matrix}\right.or\left\{{}\begin{matrix}2y-4< 0\\3y+6>0\end{matrix}\right.\\ =>\left\{{}\begin{matrix}y>2\\y< -2\end{matrix}\right.or\left\{{}\begin{matrix}y< 2\\y>-2\end{matrix}\right.\\ =>-2< y< 2\)
`(2y-4)(3y+6)<0`
\(=>\left\{{}\begin{matrix}2y-4>0\\3y+6< 0\end{matrix}\right.or\left\{{}\begin{matrix}2y-4< 0\\3y+6>0\end{matrix}\right.\)
\(=>\left\{{}\begin{matrix}2y>4\\3y< -6\end{matrix}\right.or\left\{{}\begin{matrix}2y< 4\\3y>-6\end{matrix}\right.\\ =>\left\{{}\begin{matrix}y>2\\y< -2\end{matrix}\right.\left(L\right)}or\left\{{}\begin{matrix}y< 2\\y>-2\end{matrix}\right.\\ =>-2< y< 2\)