-1/3+1/3^2-1/3^3+...+1/3^50-1/3^51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = -1/3 +1/(3^2) - 1/(3^3) + .... - 1/(3^51)
E.1/3 = -1/(3^2) + 1/(3^3)-1/(3^4) +.... - 1/(3^52)
E + E.1/3 = [-1/3+1/(3^2) - 1/(3^3) +.... -1/(3^51)]+[-1/(3^2) +1/(3^3) -1/(3^4) +.... - 1/(3^52)]
E.4/3 = -1/3-1/(3^52)
E.4/3 = (-3^51 - 1)/(3^52)
E = (-3^51 - 1)/(3^52) . 3/4
E = (-3^51-1)/(4.3^51)
Ta có :
\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)
= \(\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+\left(3\frac{3}{4}+\frac{1}{4}\right)+...+\left(49\frac{49}{50}+\frac{1}{50}\right)+\left(50\frac{50}{51}+\frac{1}{51}\right)\)
= \(2+3+4+5+...+49+50+51\)
= \(\left(\frac{51-2}{1}+1\right).\frac{51+2}{2}\)
= \(50.26,5\)
= 1325
Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^3}+\dfrac{1}{3^5}+...+\dfrac{1}{3^{47}}+\dfrac{1}{3^{49}}+\dfrac{1}{3^{51}}\)
Và \(B=\dfrac{1}{3^2}+\dfrac{1}{3^4}+\dfrac{1}{3^6}+...+\dfrac{1}{3^{46}}+\dfrac{1}{3^{48}}+\dfrac{1}{3^{50}}\)
Ta có:
\(9A=3+\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{45}}+\dfrac{1}{3^{47}}+\dfrac{1}{3^{49}}\)
\(9A-A=\left(3+\dfrac{1}{3}+...+\dfrac{1}{3^{47}}+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{49}}+\dfrac{1}{3^{51}}\right)\)
\(8A=3-\dfrac{1}{3^{51}}\)
\(A=\dfrac{3-\dfrac{1}{3^{51}}}{8}\)
\(9B=1+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{44}}+\dfrac{1}{3^{46}}+\dfrac{1}{3^{48}}\)
\(9B-B=\left(1+\dfrac{1}{3^2}+...+\dfrac{1}{3^{46}}+\dfrac{1}{3^{48}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{48}}+\dfrac{1}{3^{50}}\right)\)
\(8B=1-\dfrac{1}{3^{50}}\)
\(B=\dfrac{1-\dfrac{1}{3^{50}}}{8}\)
Suy ra
\(-\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}=B-A=\dfrac{1-\dfrac{1}{3^{50}}}{8}-\dfrac{3-\dfrac{1}{3^{51}}}{8}\)
\(=\dfrac{\left(1-\dfrac{1}{3^{50}}\right)-\left(3-\dfrac{1}{3^{51}}\right)}{8}=\dfrac{-2-\dfrac{1}{3^{50}}+\dfrac{1}{3^{51}}}{8}=\dfrac{-2+\dfrac{-3^{51}+3^{50}}{3^{101}}}{8}\)
\(=\dfrac{-2+\dfrac{3^{50}\left(-3+1\right)}{3^{101}}}{8}=\dfrac{-2-\dfrac{2}{3^{51}}}{8}=-\dfrac{2\left(1+\dfrac{1}{3^{51}}\right)}{8}=-\dfrac{1+\dfrac{1}{3^{51}}}{4}\)
E=-1/3+1/3^2-1/3^3+1/3^4-...+1/3^50-1/3^51
3E=-1+1^2-1^3+1^4-1^5+...+1^50-1^51
3E=-1+1-1+1-1+...+1-1
3E=0
đặt tổng là S => S= \(\frac{-1}{3}+\left(\frac{-1}{3}\right)^2+\left(\frac{-1}{3}\right)^3+...+\left(\frac{-1}{3}\right)^{51}\)
xét tổng S'= a+ a2+... +a51
a.S'= a2+ ..+ a52 = S'-a+ a52 => S' = \(\frac{a^{52}-a}{a-1}\).
Thay a= \(\frac{-1}{3}=>S=\frac{\left(\frac{-1}{3}\right)^{52}+\frac{1}{3}}{\frac{-1}{3}-1}=-\frac{\frac{1}{3^{51}}+1}{4}=-\frac{1}{4.3^{51}}-\frac{1}{4}\)
-----A=-1/3+1/3^2-1/3^3+-----+1/3^50-1/...
A*1/3 =-1/3^2+1/3^3+--------------------+1/3^5...
--------A=-1/3+1/3^2-1/3^3+...+1/3^50-1...
-------A*1/3 =-1/3^2+1/3^3+..---------...+1/3^51-1/3^...
---------------------------------------...
A+A*1/3=-1/3+0...+0+...0---------------...
A+A*1/3= -1/3-1/3^52
4/3*A= -1/3-1/3^52
Vậy
A= -(1/3+1/3^52)*3/4.
Từ dãy trên ta có:
(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\)) < vì không có cách nhập hỗn số nên mình đổi ra phân số >
= 2 + 3 + 4 + 5 + 6 + ..........................+ 51
Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số
Chia ra : 50 : 2 = 25 cặp
ta có( 51 + 2 ) x 25 =1325
Vậy tổng trên có kết quả bằng 1325 (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )