K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

đề sai. 

CHỈ CÓ THỂ AH+AB < AB+AC

a: Xét ΔABC vuông tại A có sin C=AB/BC=3/5

=>cos C=căn 1-(3/5)^2=4/5

=>AC/BC=4/5

=>BC=20(cm)

\(AB=\sqrt{20^2-16^2}=12\left(cm\right)\)

ΔABC vuông tại A có AH là đường cao

nên CH*CB=CA^2

=>CH*20=16^2=256

=>CH=12,8(cm)

b: ΔHAB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔHAC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN đồng dạng với ΔACB