Cho a là 1 so nguyen . chung minh rang
a, Neu a là duong thi so lien sao a là duong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Dang Thi Lien - Toán lớp 6 - Học toán với OnlineMath
Ta gọi :3SND lần lượt là\(N,N+1,N+2\left(N\in Z\right)\)
\(N\left(N+1\right)\left(N+2\right)=\left(N^2+N\right)\left(N+2\right)=N^3+2N^2+N^2+2N=N^3+3N^2+2N\)
\(N^3< N^3+3N^2+2N< N^3+3N^2+3N+1\)
\(\Rightarrow N^3< N^3+3N^2+2N< \left(N+1\right)^3\left(1\right)\)
Vì \(N\)là SND nên từ \(\left(1\right)\)
Ta có:\(n\left(n+1\right)\left(n+2\right)\)ko là LP của 1 STN
Bài 1
a,
Gọi d là ƯCLN(6n+5;4n+3)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\)
\(\Rightarrow12n+10-\left(12n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
b, Vì số nguyên dương nhỏ nhất là số 1
=> x+ 2016 = 1
=> x= 1-2016
x= - 2015
Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)
\(6n+5⋮d\Rightarrow12n+10⋮d\)
\(4n+3⋮d\Rightarrow12n+9⋮d\)
Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)
Vậy ta có đpcm