Tìm x. y:
(x-1).(y-7)=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x,y\right)\in\left\{\left(1;2\right);\left(-1;-2\right);\left(2;1\right);\left(-2;-1\right)\right\}\)
1)\(\left(x+1\right).\left(y-2\right)=0\) \(\left(x,y\inℤ\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
2)\(\left(x-5\right).\left(y-7\right)=1\)
x-5 | 1 | -1 |
y-7 | 1 | -1 |
x | 6 | 4 |
y | 8 | 6 |
3)\(\left(x+4\right).\left(y-2\right)=2\)
x+4 | 1 | 2 | -1 | -2 |
y-2 | 2 | 1 | -2 | -1 |
x | -3 | -2 | -5 | -6 |
y | 4 | 3 | 0 | 1 |
4)\(\left(x-4\right).\left(y+3\right)=-3\)
x-4 | 1 | -1 | 3 | -3 |
y+3 | -3 | 3 | -1 | 1 |
x | 5 | 3 | 7 | 1 |
y | -6 | 0 | -4 | -2 |
5)\(\left(x+3\right).\left(y-6\right)=-4\)
x+3 | -1 | 1 | -4 | 4 | 2 | -2 |
y-6 | 4 | -4 | 1 | -1 | -2 | 2 |
x | -4 | -2 | -7 | 1 | -1 | -5 |
y | 10 | 2 | 7 | 5 | 4 | 8 |
6)\(\left(x-8\right).\left(y+7\right)=5\)
x-8 | 1 | 5 | -1 | -5 |
y+7 | 5 | 1 | -5 | -1 |
x | 9 | 13 | 7 | 3 |
y | -2 | -6 | -12 | -8 |
7)\(\left(x+7\right).\left(y-3\right)=-6\)
x+7 | -1 | 1 | -6 | 6 | -2 | 2 | -3 | 3 |
y-3 | 6 | -6 | 1 | -1 | 3 | -3 | 2 | -2 |
x | -8 | -6 | -13 | -1 | -9 | -5 | -10 | -4 |
y | 9 | -3 | 4 | 2 | 6 | 0 | 5 | 1 |
8)\(\left(x-6\right).\left(y+2\right)=7\)
x-6 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 7 | 13 | 5 | -1 |
y | 5 | -1 | -9 | -3 |
ok :)
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
a, \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7};x+y-7=60\)
\(\Rightarrow\frac{x}{5.8}=\frac{y}{6.8};\frac{y}{8.6}=\frac{z}{7.6};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{48}=\frac{z}{42};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42};x+y=67\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{40}=\frac{y}{48}=\frac{x+y}{40+48}=\frac{67}{88}\)
Tính nốt nha
1.Tìm x,y để (x+1)(y^2-6)=0
2.Tìm x biết x^2-12x+7=7
3.Tìm giá trị nhỏ nhất của A=(x+2)^2+(Y-1/5)^2-10
\(\dfrac{x}{y}=\dfrac{3}{7}.\\ \Rightarrow x=\dfrac{3}{7}y.\\ x-y=16.\\\Rightarrow\dfrac{3}{7}y-y=16.\\ \Rightarrow y=-28.\\ \Rightarrow x=-12.\)
\(\dfrac{x}{1,8}=\dfrac{y}{3,2}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{1,8}{3,2}=\dfrac{9}{16}.\\ \Rightarrow x=\dfrac{9}{16}y.\\ y-x=7.\\ \Rightarrow y-\dfrac{9}{16}y=7.\\ \Leftrightarrow y=16.\\ \Leftrightarrow x=9.\)
\(\dfrac{x}{5}=\dfrac{y}{8}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{8}.\\ \Rightarrow x=\dfrac{5}{8}y.\\ x+2y=42.\\ \Rightarrow\dfrac{5}{8}y+2y=42.\\ \Leftrightarrow y=16.\\ \Rightarrow x=10.\)
\(\dfrac{x}{5}=\dfrac{y}{7}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{7}.\\ \Rightarrow x=\dfrac{5}{7}y.\\ x.y=35.\\ \Rightarrow\dfrac{5}{7}y.y=35.\\ \Leftrightarrow y^2=49.\\ \Leftrightarrow u=\pm7.\\ \Rightarrow x=\pm5.\)
`(x-1)(y-7)=7=7.1=(-7).(-1)`
`@x-1=7` và `y-7=1`
`x=8` và `y=8`
`@x-1=1` và `y-7=7`
`x=2` và `y=14`
`@x-1=-7` và `y-7=-1`
`x=-6` và `y=6`
`@x-1=-1` và `y-7=-7`
`x=0` và `y=0`