K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

a/ Xét pt :

\(x^2-2\left(m-1\right)+2m-5=0\)

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)

\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m

b/ Phương trình cớ 2 nghiệm trái dấu

\(\Leftrightarrow2m-5< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

c/ Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)

\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)

27 tháng 1 2022

1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb với mọi m 

2, Vì pt có 2 nghiệm trái dấu 

\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)

\(=\left(2m-3\right)^2+6\ge6\forall m\)

Dấu ''='' xảy ra khi m = 3/2 

Vậy với m = 3/2 thì A đạt GTNN tại 6 

a: Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8=(2m-2)^2+8>0 với mọi m

=>PT luôn có hai nghiệm pb

b: PT có hai nghiệm trái dấu

=>2m-3<0

=>m<3/2

13 tháng 5 2021

a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)

\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )

15 tháng 5 2021

Câu a:  Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m

    ⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m

Câu b:

Để phương trình có 2 nghiệm nguyên thì  \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)  

a: a=1; b=2m; c=-1

Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt

b: \(x_1^2+x_2^2-x_1x_2=7\)

=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)

=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)

=>4m^2=7-3=4

=>m^2=1

=>m=1 hoặc m=-1

30 tháng 6 2020

a

Ta có:

\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m

b

Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)

Vậy .....................

1: Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8

=(2m-4)^2+8>=8>0 với mọi m

=>PT luôn có 2 nghiệm pb

2: Để pt có hai nghiệm trái dấu thì 2m-5<0

=>m<5/2

3: A=(x1+x2)^2-2x1x2

=(2m-2)^2-2(2m-5)

=4m^2-8m+4-4m+10

=4m^2-12m+14

=4(m^2-3m+7/2)

=4(m^2-2m*3/2+9/4+5/4)

=4(m-3/2)^2+5>=5

Dấu = xảy ra khi m=3/2

15 tháng 5 2023

`1)` Ptr có: `\Delta'=[-(m-1)]^2-2m+5`

                             `=m^2-4m+4+2=(m-2)^2+2 > 0 AA m`

  `=>` Ptr có `2` nghiệm phân biệt `AA m`

`2)` Ptr có `2` nghiệm trái dấu `<=>ac < 0`

          `<=>2m-5 < 0<=>m < 5/2`

`3) AA m` ptr có `2` nghiệm phân biệt

  `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m-2),(x_1.x_2=c/a=2m-5):}`

Ta có: `A=x_1 ^2+x_2 ^2`

`<=>A=(x_1+x_2)^2-2x_1.x_2`

`<=>A=(2m-2)^2-2(2m-5)`

`<=>A=4m^2-8m+4-4m+10`

`<=>A=4m^2-12m+14`

`<=>A=(2m-3)^2+5 >= 5 AA m`

   `=>A_[mi n]=5`

Dấu "`=`" xảy ra `<=>2m-3=0<=>m=3/2`

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

17 tháng 6 2022

ko biết làm