K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

đồ đần

AH
Akai Haruma
Giáo viên
10 tháng 2

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

AH
Akai Haruma
Giáo viên
10 tháng 2

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

30 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{a}{c}=\dfrac{1}{2}\Rightarrow\dfrac{a}{1}=\dfrac{c}{2}\\ \Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}\)

Áp dụng tcdtsnb:

\(\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}=\dfrac{a^3+b^3+c^3}{8+27+64}=\dfrac{99}{99}=1\\ \Rightarrow\left\{{}\begin{matrix}a^3=8\\b^3=27\\c^3=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

NV
8 tháng 4 2021

\(\left(a^3+b^2+c\right)\left(\dfrac{1}{a}+1+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a^3+b^2+c}{a}\ge\dfrac{\left(a+b+c\right)^2}{1+a+ac}=\dfrac{9}{1+a+ac}\)

\(\Rightarrow\dfrac{a}{a^3+b^2+c}\le\dfrac{1+a+ac}{9}\)

Tương tự: \(\dfrac{b}{b^3+c^2+a}\le\dfrac{1+b+ab}{9}\)\(\dfrac{c}{c^3+a^2+b}\le\dfrac{1+c+bc}{9}\)

Cộng vế:

\(P\le\dfrac{3+a+b+c+ab+bc+ca}{9}\le\dfrac{6+\dfrac{1}{3}\left(a+b+c\right)^3}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

9 tháng 10 2016

\(\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)

\(\frac{a}{c}=\frac{1}{2}\Leftrightarrow\frac{a}{1}=\frac{c}{2}\Leftrightarrow\frac{a}{2}=\frac{c}{4}\)

=>\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

ÁP dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a^3+b^3+c^3}{2^3+3^3+4^3}=\frac{99}{99}=1\)

=>\(\begin{cases}a=2\\b=3\\c=4\end{cases}\)

9 tháng 10 2016

Giải:
Ta có: \(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)

\(\frac{a}{c}=\frac{1}{2}\Rightarrow\frac{a}{1}=\frac{c}{2}\Rightarrow\frac{a}{2}=\frac{c}{4}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\frac{a^3}{8}=\frac{b^3}{27}=\frac{c^3}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{8}=\frac{b^3}{27}=\frac{c^3}{64}=\frac{a^3+b^3+c^3}{8+27+64}=\frac{99}{99}=1\)

+) \(\frac{a^3}{8}=1\Rightarrow a^3=8\Rightarrow a=2\)

+) \(\frac{b^3}{27}=1\Rightarrow b=3\)

+) \(\frac{c^3}{64}=1\Rightarrow c=4\)

Vậy bộ số \(\left(a,b,c\right)\) là \(\left(2,3,4\right)\)

 

26 tháng 10 2016

khói quá

27 tháng 10 2016

1.

Áp dụng hệ quả cô si:

\(\left(a^2+b^2+c^2\right)^{1000}\le3^{999}\left(a^{2000}+b^{2000}+c^{2000}\right)=3^{1000}\)

=>\(a^2+b^2+c^2\le3\)Dấu = khi a=b=c=1

không biết đúng hay sai đâu