Cho tam giác ABC, tia phân giác \(\widehat{A}\)cắt BC tại D, \(AH⊥BC\), \(\widehat{B}-\widehat{C}=30^0\) . Tính \(\widehat{HAD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{BAC}\)= 1800 - (\(\widehat{B}+\widehat{C}\)) = 1800 - ( 800 + 300)= 700
\(\widehat{A}_1\)=\(\widehat{A}_2\)=\(\dfrac{\widehat{A}}{2}\)=\(\dfrac{70^0}{2}\)= 350
\(\widehat{ADC}=\widehat{B}+\widehat{A}_1\)(Góc ngoài của tam giác)
=800 + 350)= 1150
Do đó \(\widehat{ADB}\)= 1800 - \(\widehat{ADC}\)= 1800 + 1150=650
Hình vẽ:
Gọi A1, A2 là 2 góc được tạo ra bởi tia phân giác góc A.
Ta có:
Góc ∠BAC = 1800 – ( ∠B + ∠C)
= 1800 – ( 800 + 300) = 700
Hay ta có thể gọi ∠A = 700
Góc ∠A1 = ∠A2
= ∠A/2 = 700 /2 = 350
- Xét tam giác ADC ta có: Góc ∠ADC = 1800 – (∠C + ∠A2)
= 1800 – (350 + 300)= 1150
- Do đó góc ∠ADB = 1800 – ∠ADC
= 1800 – 1150
= 650
Câu 1:
Hình vẽ bn tự vẽ nhá
Tam giác ABC có
A+B+C= 180 (độ)
Mà B-C = 20 (độ)
Do đó: ta có: A+B+C+B-C= 180+20 = 200 (Độ)
Suy ra: A+2B = 200 (Độ)
Suy ra \(2\left(\frac{A}{2}+B\right)=200\)
Suy ra: \(\frac{A}{2}+B=100\)
Vì AD là tia pg của góc BAC nên
\(\widehat{BAD}=\frac{A}{2}\)
Suy ra: \(\widehat{BAD}+\widehat{B}=100^o\)
Suy ra:
\(\widehat{BDA}=180^o-100^o=80^o\)
Vậy \(\widehat{HAD}=90^o-80^o=10^o\)(tổng 2 góc nhon trong \(\Delta_{vuong}AHD\))
Xong :)
Tính chất đoạn chắn:
2 đường thẳng song song bị chắn bởi 2 đường thẳng song song thì 2 đoạn song song bị chắn bằng nhau, 2 đoạn thẳng song song chắn cũng bằng nhau. như hình chữ nhật ấy.
Hình vẽ
Ta nói: c song song với d và a song song với b
Tứ giác ABCD là hình chữ nhật.
Ở đây mik kẻ đường chéo để giúp chứng minh định lí. Bạn chỉ cần chứng minh tam giác ABD = tam giác CBD, với lại chứng minh bốn góc là 90 độ nữa là xong. Suy ra đc AD=BC và AB=CD. Bn hiểu chưa vậy ??????????????????????????????????????