Cho a/3=b/4=c/5và a+b+c=24 tính M= a.b+b.c+c.a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ bài toán, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) và \(a+b+c=24\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)
Suy ra:
\(a=2\cdot3=6\)
\(b=2\cdot4=8\)
\(c=3\cdot5=15\)
Ta có :
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)
theo bài ra ta có:
\(a.b=c\left(1\right)\\ b.c=4a\left(2\right)\\ c.a=9b\left(3\right)\\ \Rightarrow a.b.b.c.c.a=c.4a.9b\)
\(\Rightarrow\left(abc\right)^2=36abc\\ \Rightarrow abc=36\left(4\right)\)
thay 1 vào 4 ta có:
\(c^2=36\\ \Rightarrow c=\left\{6;-6\right\}\)
thay 2 vào 4 ta có:
\(\Rightarrow4a^2=36\\ \Rightarrow a^2=9\\ \Rightarrow a=\left\{3;-3\right\}\)
thay 3 vào 4 ta có:
\(\Rightarrow9b^2=36\\ \Rightarrow b^2=4\\ \Rightarrow b=\left\{2;-2\right\}\)
vậy \(a=\left\{6;-6\right\};b=\left\{2;-2\right\};c=\left\{3;-3\right\}\)
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24