Cm rằng vs mọi số nguyên dương n>= 4 ta có: 3^n-1 > n(n+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(n=4\Rightarrow3^3>4.6\) (đúng)
- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\)
- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)
Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:
\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)
\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)
\(\left(1+\dfrac{1}{n}\right)^n=C_n^0+C_n^1.\dfrac{1}{n}+C_n^2.\dfrac{1}{n^2}+...+C_n^n.\dfrac{1}{n^n}\)
\(=1+1+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}\)
\(=2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}>2\)
Mặt khác:
\(C_n^k.\dfrac{1}{n^k}=\dfrac{n!}{k!\left(n-k\right)!.n^k}=\dfrac{\left(n-k+1\right)\left(n-k+2\right)...n}{n^k}.\dfrac{1}{k!}< \dfrac{n.n...n}{n^k}.\dfrac{1}{k!}=\dfrac{n^k}{n^k}.\dfrac{1}{k!}=\dfrac{1}{k!}\)
\(< \dfrac{1}{k\left(k-1\right)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)
Do đó:
\(C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< 2+1=3\) (đpcm)
bạn ghi sai đề ; 4n+3+4n+2-4n-1-4n =4n( 43+42-4-1)=4n.75 =4n-1.300 ta thấy n\(\inℕ^∗\) nên 4n-1.300 \(⋮\)300 \(\Rightarrow\)..............
......................(bạn ghi câu kết nha
\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)
Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)
Vậy ta đc đpcm
5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8
Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên
Xét số hạng tổng quát ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
Áp dụng vào bài tập, ta có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)
Ta chứng minh bằng quy nạp:
- Với \(n=4\) BĐT trở thành \(3^3>4.6\) (đúng)
- Giả sử BĐT đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\)
Ta cần chứng minh BĐT cũng đúng với \(n=k+1\)
Hay \(3^k>\left(k+1\right)\left(k+3\right)\)
Thật vậy, ta có:
\(3^k=3.3^{k-1}>3.k\left(k+2\right)=\left(k+1\right)\left(k+3\right)+2k^2+2k-3\)
Do \(k\ge4\Rightarrow k-3>0\Rightarrow2k^2+2k-3>0\)
\(\Rightarrow\left(k+1\right)\left(k+3\right)+2k^2+2k-3>\left(k+1\right)\left(k+3\right)\)
\(\Rightarrow3^k>\left(k+1\right)\left(k+3\right)\) (đpcm)