Cho (O). Từ A kẻ 2 tiếp tuyến AB và AC, kẻ đường kính BD. AD cắt (O) tại E. Chứng minh góc ACE và góc ADC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay BC=2BI
bạn ghi nốt đề đi, mình giúp tiếp nhé
a, Vì AB = AC ( tc tiếp tuyến )
OC = OB = R
Vậy OA là đường trung trực đoạn BC
=> AO vuông BC
b) Biết R = 5 cm, AB = 12 cm. Tính BC?
c) Chứng minh tứ giác AEDO là hình bình hành.
đây nhé bn
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trực của BC
hay OA⊥BC
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b:
Xét (O) có
ΔBDC nội tiếp
BD là đường kính
Do đó: ΔBDC vuông tại C
Xét ΔOBA vuông tại B và ΔDCB vuông tại C có
\(\widehat{BOA}=\widehat{CDB}\)
Do đó: ΔOBA∼ΔDCB
Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)
hay \(DC\cdot OA=2\cdot R^2\)
Chứng minh hai góc này như thế nào cơ? Hình như bị thiếu rồi ấy.
góc ACE=1/2*sđ cung CE
góc ADC=góc EDC=1/2*sđ cung CE
=>góc ACE=góc ADC