2x-3= 2(x-3)
x^2 -4x+6=0
chứng tỏ vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 4x2+4x+2
=4x2+2x+2x+2
=2x.(2x+1)+2x+1+1
=2x.(2x+1)+(2x+1)+1
=(2x+1)2+1
Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm
b) x2+x+1
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm
Phần c để tớ nghĩ đã
![](https://rs.olm.vn/images/avt/0.png?1311)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^2+8x+17=2.\left(x^2+2.x.2+2^2\right)+9=2.\left(x+2\right)^2+9\)
Ta có: \(2.\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+2\right)^2+9\ge9\forall x\)
\(\Rightarrow2x^2+8x+17>0\forall x\)
\(\Rightarrow\)đa thức \(2x^2+8x+17\)vô nghiệm
đpcm
\(-x^2+4x-6=-\left(x^2+2.x.2+2^2\right)-2=-\left(x+2\right)^2-2\)
Ta có:\(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2-2\le-2\forall x\)
\(\Rightarrow-\left(x+2\right)^2-2< 0\forall x\)
\(\Rightarrow\)đa thức \(-x^2+4x-6\)vô nghiệm
đpcm
Tham khảo nhé~
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
2x – 3 = 2(x – 3)
⇔ 2x – 3 = 2x – 6
⇔ 2x - 2x = 3 – 6
⇔ 0x = -3 (vô lí)
Vậy phương trình đã cho vô nghiệm
\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)
\(\Rightarrow\) phương trình vô nghiệm
\(x^2-4x+6=0 \)
Ta có
\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)
\(=>x^2-4x+6>0\)
\(\Rightarrow\) phương trình vô no
\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)
\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)