cho M = 1/2^2 + 1/3^2 = 1/4^2 + .... + 1/2014^2 + 1/2015^2
các bạn nhớ dấu / là kí hiệu phân số nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt N = 1 + 2 + 22 +...+ 22012
2N = 2 + 22 + 23 +...+ 22013
2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)
N = 22013 - 1
Thay N vào M ta được:
\(M=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\frac{1}{2}\)
1: Ta có: \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2020\right)+2021\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(2019-2020\right)+2021\)
\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)+2021\)
\(=-1\cdot1010+2021\)
\(=-1010+2021=1011\)
2) Ta có: \(S_2=\left(-2\right)+4+\left(-6\right)+8+...+\left(-2014\right)+2016\)
\(=\left(-2+4\right)+\left(-6+8\right)+...+\left(-2014+2016\right)\)
\(=2+2+...+2\)
\(=2\cdot504=1008\)
Đặt A= \(\frac{4}{1.2}+\frac{4}{2.3}+...+\frac{4}{2014.2015}\)
=>\(\frac{1}{4}A=\frac{1}{4}\left(\frac{4}{1.2}+\frac{4}{2.3}+...+\frac{4}{2014.2015}\right)\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
=\(1-\frac{1}{2015}\)
=\(\frac{2014}{2015}\)
vậy ....
dấu "." là dấu nhân
\(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
\(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=4\left(1-\frac{1}{2015}\right)\)
\(=4\cdot\frac{2014}{2015}\)
\(=\frac{8056}{2015}\)
ta xét 2 TH:
+)A>0 (luôn đúng)
+)ta có : 1/n2 < 1/(n-1).n với n>1
=>\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2013}-\frac{1}{2014}=\frac{1}{1}-\frac{1}{2014}=\frac{2013}{2014}<1\)
=>A<1
do đó 0<A<1 <=>[A]=0
đơn giản