c/m tồn tại stn n khác 0 t/m ;(13579^n-1) chia hết cho 3^13579
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán thiếu dữ kiện
Vì 3 số t; n; m là dãy số cách đều có khoảng cách là a
Ví dụ t=5; n=7; m=9 thoả mãn điều kiện lớn hơn 3
m-n = n-t = 2 thoả mãn a=2 khác 0 nhưng a không chia hết cho 6
:3 Số 'm' phải là số lẻ nhé cậu
Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)
Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)
Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)
Do m lẻ nên \(S⋮2018=1009.2⋮1009\)
Vậy \(S⋮1009\)
Mặt khác ta lại có
\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\) \(⋮2017\)
=> \(S⋮2017\)
Mà (1009,2017) = 1
=> \(S⋮2017.1009=......\)
a) Để phân số B không tồn tại thì (n-2)(n+1) khác 0
Với (n-2)(n+1)>0
Vì n+1>n-2
n+1<0 hoặc n-2>0
n<-1 hoặc n>2
Với (n-2)(n+1)>0
Vì n+1>n-2
n+1>0 hoặc n-2<0
n>-1 hoặc n>2
n thuộc Z, n khác -1, n khác 2