hãy chứng minh rằng tích của 2 số nguyên tố là 1 hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số nguyên tố là số chỉ chia hết cho 1 và chính nó nếu nhân 2 số lại vs nhau thì tích đó chia hết cho cả 2 số đó nên là hợp số
B2
Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2
Mà p^2+2003 > 2 => p^2+2003 là hợp số
k mk nha
bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ
=> số lẻ nhân số lẻ bằng một số lẻ
vì 2003 là số lẻ nên số lẻ cộng số lẻ bang số chẵn lớn hơn 2 (vì p^2 là một số nguyên dương)
=> p^2 +2003 là hợp số
Câu 1:
\(25^{15}+10^{20}\)
\(=5^{30}+5^{20}\cdot2^{20}\)
\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)
=>Đây là hợp số
Vì p là số nguyên tố , p > 3
nên p = 3k + 1 hoặc p = 3q + 2 (k;q \(\inℕ^∗\) )
Với p = 3k + 1
thì 8p2 + 1 = 8.(3k + 1)2 + 1 = 8.(9k2 + 6k + 1) + 1
= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)
=> 8p2 + 1 là hơp số (loại)
Với p = 3q + 2
8p2 + 1 = 8(3q + 2)2 + 1 = 72q2 + 96q + 33 \(⋮3\)
=> p = 3q + 2 (loại)
Vậy không tồn tại p để thỏa mãn điều kiện đề bài
Giả sử 2 số nguyên tố đó là a,b
do a,b là số nguyên tố
=> a có 1 ước là 1 và a
=>b có 1 ước là 1 và b
do đó tích ab có 3 ước là a,b,1
mà theo định nghĩa số có nhiều hơn 2 ước là hợp số
Suy ra tích của hai số nguyên tố là hợp số