Chứng minh với a,b thuộc Z: a+b chia hết cho 3 thì a^3+b^3 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Ta có: a^3+b^3=(a+b).(a^2-ab+b^2)
Mà a+b chia hết cho 3 và a,b thuộc Z.
=> điều phải chúng minh
Ta có: a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết 6
=>a2-ab+b2 chia hết 6
=>a3+b3 chia hết 6
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
mk làm phụ mấy câu thôi
a)2a-7 chia hết cho a-1
2a-2-5 chia hết cho a-1
2(a-1)-5 chia hết cho a-1
=>5 chia hết cho a-1 hay a-1EƯ(5)={1;-1;5;-5}
=>aE{2;0;6;-4}
b)3a+4 chia hết cho a-3
3a-9+13 chia hết cho a-3
3(a-3)+13 chia hết cho a-3
=>13 chia hết cho a-3 hay a-3EƯ(13)={1;-1;13;-13}
=>aE{4;2;16;-10}
Bài 1:
a/ 5a + 8b = 6a - a + 6b + 2b = 6(a+b) + ( - a + 2b) chia hết cho 3 mà 6(a + b) chia hết cho 3 => - a + 2b chia hết cho 3
b/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b = 10a + b + 15b chia hết cho 3 mà 15b chia hết cho 3 => 10a + b chia hết cho 3
c/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b =9a + a + 16b chia hết cho 3 mà 9a chia hết cho 3 => 16b + a chia hết cho 3
Ta có: a3+b3=(a+b)(a2-ab+b2)
Do a+b chia hết cho 3 => (a+b)(a2-ab+b2) chia hết cho 3
=> a3+b3 chia hết cho 3 => Đpcm