Với a,b,c thuộc R thỏa mãn :
CMR : (a+2b)(b+2c)(c+2a)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề sai , giả sử a = b = c = 0
=> vế trái bằng 0 , vé phải bằng 24
\(\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3+24\)
\(=24+27a^3+27b^3+27c^3+3\left(\left(3a+b\right)\left(3a-c\right)\left(b-c\right)+\left(3b+c\right)\left(3b-a\right)\left(c-a\right)+\left(3c+a\right)\left(3c-b\right)\left(a-b\right)\right)\)\(\left(3a+3b+3c\right)^3=27a^3+27b^3+27c^3+81\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow8+A=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lời giải:
Đặt \(\left\{\begin{matrix} 3a+b-c=x\\ 3b+c-a=y\\ 3c+a-b=z\end{matrix}\right.\)
Khi đó, điều kiện đb tương đương với:
\((x+y+z)^3=24+x^3+y^3+z^3\Leftrightarrow 3(x+y)(y+z)(x+z)=24\)
\(\Leftrightarrow 3(2a+4b)(2b+4c)(2c+4a)=24\)
\(\Leftrightarrow (a+2b)(b+2c)(c+2a)=1\)
Do đó ta có đpcm.
đặt\(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
(x+y+z)3=24+x3+y3+z3(x+y+z)3=24+x3+y3+z3
⇔3(x+y)(x+z)(x+z)=24⇔3(x+y)(x+z)(x+z)=24
⇒3(2a+4b)(2b+4c)(2c+4a)=24⇒3(2a+4b)(2b+4c)(2c+4a)=24
⇒(a+2b)(b+2c)(c+2a)=1⇒(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Chúc bạn học tốt!
Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)
\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)
Do đó ta có đpcm
Chúc bạn học tốt!
3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm