K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

FH là phân giác góc DFE => HQ=HV

Chứng minh FQ=FV => FH là trung trực QV => FH vuông góc QV => QV song song AB => góc HIQ = HAF

Mà góc HAF = HEF nên góc HIQ = HEF => HEIQ nội tiếp => HIE = 90

Chứng minh tam giác DIS = DIE => IS=IE

14 tháng 3 2021

ai đó làm giúp với

 

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

b; góc ACK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK

10 tháng 3 2022

Giúp với ạ em cho 100 tim

10 tháng 3 2022

a, Xét tứ giác AEHF ta có 

^AEH + ^AFH = 1800

mà 2 góc này đối 

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

Xét tứ giác AEDB có 

^AEB = ^ADB = 900

mà 2 góc này kề, cùng nhìn cạnh AB 

Vậy tứ giác AEDB là tứ giác nt 1 đường tròn 

b, ^ACK = 900 ( góc nt chắn nửa đường tròn ) 

Xét tam giác ABD và tam giác AKC có 

^ABC = ^AKC (góc nt chắn cung AC) 

^ADB = ^ACK = 900

Vậy tam giác ABD ~ tam giác AKC (g.g) 

\(\dfrac{AB}{AK}=\dfrac{AD}{AC}\Rightarrow AB.AC=AD.AK\)

 

22 tháng 11 2022

a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔBCK nội tiếp

BK là đường kính

Do đó: ΔBCK vuông tại C

=>CK//AH

Xét (O) có

ΔBAK nội tiếp

BK là đường kính

Do đó: ΔBAK vuông tại A

=>AK//CH

Xét tứ giác CHAK có

CH//AK

CK//AH

DO đó: CHAK là hình bình hành