cho tam giác ABC nhọn nội tiếp đường tròn o . H là giao điểm ba đường cao AD,BE,CF a) Chứng minh tứ giác BFEC và tứ giác AFHE nội tiếp b)Vẽ đường kính AK .Chứng minh AK.AD=AB.AC c)gọi N là giao điểm của FE và OK ,Chứng minh tứ giác NHDK nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
FH là phân giác góc DFE => HQ=HV
Chứng minh FQ=FV => FH là trung trực QV => FH vuông góc QV => QV song song AB => góc HIQ = HAF
Mà góc HAF = HEF nên góc HIQ = HEF => HEIQ nội tiếp => HIE = 90
Chứng minh tam giác DIS = DIE => IS=IE
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
b; góc ACK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK
a, Xét tứ giác AEHF ta có
^AEH + ^AFH = 1800
mà 2 góc này đối
Vậy tứ giác AEHF là tứ giác nt 1 đường tròn
Xét tứ giác AEDB có
^AEB = ^ADB = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác AEDB là tứ giác nt 1 đường tròn
b, ^ACK = 900 ( góc nt chắn nửa đường tròn )
Xét tam giác ABD và tam giác AKC có
^ABC = ^AKC (góc nt chắn cung AC)
^ADB = ^ACK = 900
Vậy tam giác ABD ~ tam giác AKC (g.g)
\(\dfrac{AB}{AK}=\dfrac{AD}{AC}\Rightarrow AB.AC=AD.AK\)
a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔBCK nội tiếp
BK là đường kính
Do đó: ΔBCK vuông tại C
=>CK//AH
Xét (O) có
ΔBAK nội tiếp
BK là đường kính
Do đó: ΔBAK vuông tại A
=>AK//CH
Xét tứ giác CHAK có
CH//AK
CK//AH
DO đó: CHAK là hình bình hành