tìm tập hợp các số nguyên x để = x-5/x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{3x+5}{x+2}\)đạt giá trị nguyên
\(\Rightarrow\)3x+5 \(⋮\)x+2
\(\Rightarrow\) 3(x+2) -1 \(⋮\)x+2
\(\Rightarrow\)1 \(⋮\) x+2
\(\Rightarrow\)x+2= -1\(\Rightarrow\)x=-3
x+2= 1 \(\Rightarrow\)x=-1
Vậy x= -3;-1
Chúc bạn làm bài tốt
=> 3x-8 chia hết cho x-5
=> 3x-15+7 chia hết cho x-5
=>7 chia hết cho x-5
=> x-5\(\in U\left(7\right)\)
=>x \(\in\left\{-2;4;6;12\right\}\)
3x-8 là bội của x-5 nên (3x-8) chia hết cho x-5
(3x-8):(x-5)= (3x-15+7):(x-5)
Vì (3x-15+7):15, (3x-15):(x-5) nên 7:(x-5)
--> 7 thuộc U(x-5)
x-5={1;-1;7;-7}
Nếu x-5=1 thì x=1+5=6
Nếu x-5=-1 thì x=-1+5=4
Nếu x-5=7 thì x=7+5=12
Nếu x-5=-7 thì x=-7+5=-2
Vậy x thuộc {-2;4;6;12}
\(3x-8\) là bội của \(x-5\)
\(\Rightarrow\) \(3x-8\) \(\vdots\) \(x-5\)
\(\Rightarrow\) \(3x-8\) \(\vdots\) \(x-5\)
\(3x-8\) \(\vdots\) \(3x-15\)
\(\Rightarrow\) \(3x-8-\left(3x-15\right)\) \(\vdots\) \(x-5\)
\(3x-8-3x+15\) \(\vdots\) \(x-5\)
7 \(\vdots\) \(x-5\)
\(\Rightarrow\) \(x-5\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow\) \(x\in\left\{6;4;12;-2\right\}\)
\(3x-8⋮x-5\\ \Rightarrow3\left(x-5\right)+7⋮x-5\\ \Rightarrow7⋮x-5\\ \Rightarrow x-5\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\\ \Rightarrow x\in\left\{6;4;12;-2\right\}\)
Để phân số \(\frac{3x}{x-2}\)là một số nguyên thì 3x phải chia hết cho x -2
3x = 3x - 6 + 6 = 3(x-2) + 6
=> 3(x-2) chia hết cho x - 2 nên 6 cũng phải chia hết cho x -2
Hay x - 2 \(\in\)Ư(6)
Ư(6) = { 1,2,3,6,-1,-2,-3,-6}
Bạn lập bảng ra cái nào được thì nhận
Để 3x/x-2 là một số nguyên thì 3x phải chia hết cho x-2.
=> 3x chia hết cho x-2
=> x-2+x-2+x-2+6 chia hết cho x-2
=> x-2 chia hết cho x-2
=> 6 chia hết cho x-2
=> x-2 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=> x-2 thuộc {3;4;5;8;1;-1;-4}
\(\frac{3x}{5}:\frac{3x^2+6x}{10}=\frac{30x}{15x^2+30x}=\frac{30x+60-60}{15x\left(x+2\right)}=\frac{30\left(x+2\right)-60}{15x\left(x+2\right)}=2x-\frac{60}{15x\left(x+2\right)}\)
Phân thức trên nguyên <=> \(\frac{60}{15x\left(x+2\right)}\) nguyên <=> \(15x\left(x+2\right)\inƯ\left(60\right)\)