tính GT biểu thức 1 + 2 - 3 - 4 + 5 + 6 -7 - 8 + ... + 2021 + 2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
Sửa đề : \(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\)
\(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{7}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2}{7}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}\right)}\right):\dfrac{2021}{2020}\\ =\left(\dfrac{2}{7}-\dfrac{2}{7}\right):\dfrac{2021}{2022}=0\)
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
1/
$A=1+2-3-4+5+6-7-8+....+2017+2018-2019-2020+2021+2022$
$=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+4043$
$=(-4)+(-4)+(-4)+...+(-4)+4043$
Số lần xuất hiện của -4 là: $[(2020-1):1+1]:4=505$
$A=(-4)\times 505+4043=2023$
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2017+2018-2019-2020\right)+\left(2021+2022\right)\)\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+4043\)
Số cặp có tổng bằng (-4) là:
\(\left[\left(2020-1\right):1+1\right]:2=1010\)
\(=>=\left(-4\right).1010+4043\)
\(=\left(-4040\right)+4043\)
\(=3\)