K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

\(x^2+y^2+z^2-xy-3y-2z+4=0\)không có  thừ số x à.

(\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)

y=2

20 tháng 8 2023

Để tìm tất cả các số nguyên x, y, z thỏa mãn phương trình x^2 + y^2 + z^2 - xy - 3y - 2z + 4 = 0, chúng ta có thể sử dụng phương pháp phân tích.

Đầu tiên, ta có thể nhìn thấy rằng phương trình trên là một phương trình bậc 2 đối với x, y và z. Ta có thể giải phương trình này bằng cách sử dụng công thức nghiệm của phương trình bậc 2.

Tuy nhiên, để tìm tất cả các số nguyên thỏa mãn phương trình, chúng ta có thể sử dụng phương pháp thử và sai.

Bước 1: Ta bắt đầu với việc thử giá trị của x từ -100 đến 100. Bước 2: Với mỗi giá trị của x, ta thử tất cả các giá trị của y từ -100 đến 100. Bước 3: Với mỗi cặp giá trị của x và y, ta tính giá trị của z từ phương trình ban đầu. Bước 4: Kiểm tra xem giá trị của z có phải là số nguyên không. Nếu đúng, ta lưu lại cặp giá trị (x, y, z) là một nghiệm của phương trình.

Sau khi thực hiện các bước trên, ta sẽ có danh sách tất cả các số nguyên (x, y, z) thỏa mãn phương trình đã cho.

8 tháng 1 2018

             \(x^2+y^2+z^2-xy-3y-2z+4\ge0\)

\(\Leftrightarrow\)\(4x^2+4y^2+4z^2-4xy-12y-8z+16\ge0\)

\(\Leftrightarrow\)\(\left(4x^2-4xy+y^2\right)+3\left(y^2-4y+4\right)+\left(4z^2-8z+4\right)\ge0\)

\(\Leftrightarrow\)\(\left(2x-y\right)^2+3\left(y-2\right)^2+2\left(z-1\right)^2\ge0\)

Dấu  "="  xảy ra   \(\Leftrightarrow\) \(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)

25 tháng 1 2017

z=X=y=1

25 tháng 1 2017

x2 + y2 + z2 = xy + 3y + 2z - 4

<=> 4x2 + 4y2 + 4z2​ = 4xy + 12y + 8z - 16

<=> (4x2 - 4xy + y2) + (3y2 - 12y + 12) + (4z2 - 8z + 4) = 0

<=> (2x - y)2 + 3(y - 2)2 + (2z - 2)2 = 0

Dấu = xảy ra khi 

\(\hept{\begin{cases}2x-y=0\\y-2=0\\2z-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)