Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua và song với AC, vẽ đường thẳng qua C và song song với BD, hai đường chéo này cắt nhau tại K a) Chứng minh rằng tứ giác OBKC là hình chữ nhật b) Chứng minh tứ giác ABKO là hình bình hành c) Tìm điều kiện về hai đường chéo của hình thoi ABCD để tứ giác OBKC kà hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác IBKC có
IB//KC
IC//BK
Do đó: IBKC là hình bình hành
mà \(\widehat{BIC}=90^0\)
nên IBKC là hình chữ nhật
a: Xét tứ giác OBKC có
OB//KC
OC//BK
góc BOC=90 độ
Do đó: OBKC là hình chữ nhật
b: OBKC là hình chữ nhật
nên OK=BC
=>OK=AB
a) tứ giác OBKC có BK // AC (GT) hay BK // OC
CK // BD (gt) hay CK // BO
=> OBKC là HBH ( vì là tứ giác có các cạnh đối //)
^BOC = 90ĐỘ (T/C Hthoi)
=> OBKC là HCN (vì là HBH có 1 góc vuông)
b) OBKC là HCN => OK = BC (t/c HCN) (1)
ABCD là Hthoi (gt) => AB = BC (t/c Hthoi) (2)
từ (1) và (2) => OK = AB
c) Hthoi ABCD cần ĐK ^A = 90ĐỘ để OBKC là Hvuông
a) OBKC là hình bình hành (BK//OC,KC//OB) mà BOC=900 (vì BD _|_ AC do ABCD là hình thoi)
=>OBKC là hình chữ nhật
b) OBKC là hình chữ nhật (cmt) => OK=BC
mà BC=AB (ABCD là hình thoi)
=>AB=OK
c) Để hình chữ nhật OBKC là hình vuông <=> OB=OC
<=> AC=BD (vì OA=OC do O là tr.điểm AC trong hình thoi ABCD và OB=OC do O là tr.điểm BD)
Vậy hình thoi ABCD là hình vuông thì OBKC là hình vuông
nhầm chút,hình thoi ABCD có AC=BD thì OBKC là hình vuông nhé bn!
THAM KHẢO
a) BK//OC, CK//OB.
Mà OB ^OC Þ OBKC là hình chữ nhật.
b)ABCD là hình thoi nên AB = BC. OBKC là hình chữ nhật nên KO =BC.
Þ KO = BC Þ ĐPCM.
c) nếu OBKC là hình vuông thì OB = OC Þ BD = AC. Vậy ABCD là hình vuông