a) Cho x + y = a; x2 + y2 =b.Tính giá trị của biểu thức E = x3 + y3 theo a và b
b) Cho x + y =1 , xy = -1. Tính giá trị của các biểu thức x2 + y2 , x3 + y3 , (x2 - y2)2 , x6 - y6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
a) Ta có: \(A=\dfrac{x-\sqrt{xy}+y}{x\sqrt{x}+y\sqrt{y}}+\dfrac{x+\sqrt{xy}+y}{x\sqrt{x}-y\sqrt{y}}\)
\(=\dfrac{x-\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\dfrac{x+\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}\)
\(=\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}}{x-y}\)
\(=\dfrac{2\sqrt{x}}{x-y}\)
a: Vì A là tập hợp của các số không âm nên để \(\left(x+y\right)_{max}\) và \(x,y\in A\)
thì x,y là hai số lớn nhất trong A
=>x=34 và y=23
b: Vì B là tập hợp của các số không âm nên để \(\left(x+y\right)_{min}\) và \(x,y\in A\)
thì x,y là hai số nhỏ nhất trong A
=>x=0 và y=14
ĐÂY NÀY:
( x +y) ^2 = a^2 => x^2 + 2xy + y^2 = a^2
=> 2xy = a^2 - ( x^2 + y^2) = a^2 -b
=> xy = a^2-b/2
Ta có E = x^3 + y^3 = ( x+ y)( x^2 - xy + y^2)
E = a ( b - a^2-b/2)