cho tứ giác ABCD, E là giao điểm của AB và CD. F là giao điểm của BC và AD. Các tia phân giác của góc E và góc F cắt nhau tại I. Chứng minh rằng : nếu góc BAD=130^o, góc BCD=50^o thì IE song song với IF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi M là giao điểm của AB và EI, N là giao điểm của AD và FI.
Ta có BMIˆ=MEBˆ+MBEˆ=EIFˆ+MFIˆ ( góc ngoài tam giác ) →EIFˆ=MEBˆ+MBEˆ−MFIˆ (1)
Lại có DNIˆ=NFDˆ+NDFˆ=EIFˆ+NEIˆ ( góc ngoài tam giác ) →EIFˆ=NFDˆ+NDFˆ−NEIˆ (2)
Do EM là phân giác AEBˆ→MEBˆ=NEIˆ
Do FN là phân giác
Ta có BMIˆ=MEBˆ+MBEˆ=EIFˆ+MFIˆ ( góc ngoài tam giác ) →EIFˆ=MEBˆ+MBEˆ−MFIˆ (1)
Lại có DNIˆ=NFDˆ+NDFˆ=EIFˆ+NEIˆ ( góc ngoài tam giác ) →EIFˆ=NFDˆ+NDFˆ−NEIˆ (2)
Do EM là phân giác AEBˆ→MEBˆ=NEIˆ
Do FN là phân giác AF
Giúp mk đi. Ai có câu trả lời đúng đầu tiên sẽ có **** từ mk. ( cả 2 phần nha!)
cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:
a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.
b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD