K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Câu này bình phương 2 lần rồi đặt nhân tử là ra

16 tháng 12 2020

ĐKXĐ: \(x\ge1\)

Ta có:

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+\left|\sqrt{x-1}-1\right|=\dfrac{x+1}{2}\left(1\right)\)

Ta xét 2 trường hợp sau:

TH1: \(x\ge2\)

Khi đó:

\(\left(1\right)\Leftrightarrow2\sqrt{x-1}-1=\dfrac{x+1}{2}\\ \Leftrightarrow2\sqrt{x-1}=\dfrac{x+3}{2}\\ \Leftrightarrow16\left(x-1\right)=x^2+6x+9\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TMĐK\right)\)

TH2: \(1\le x< 2\)

Khi đó:

\(\left(1\right)\Leftrightarrow1=\dfrac{x+1}{2}\Leftrightarrow x=1\left(TMĐK\right)\)

Vậy x=1 hoặc x=5

27 tháng 2 2019

Đặt \(a=\sqrt{2+\sqrt{x}};b=\sqrt{2-\sqrt{x}}\left(a,b\ge0\right)\Rightarrow a^2+b^2=4\)

Khi đó, ta thu được pt sau: \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)

\(\Leftrightarrow\frac{\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)}{\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)}=\sqrt{2}\)

\(\Rightarrow4\sqrt{2}-ab\left(a-b\right)=\sqrt{2}\left(2+a\sqrt{2}-b\sqrt{2}-ab\right)\) (Vì a2+b2=4)

\(\Leftrightarrow2\sqrt{2}-ab\left(a-b\right)-2\left(a-b\right)+ab\sqrt{2}=0\)

\(\Leftrightarrow\sqrt{2}\left(ab+2\right)-\left(a-b\right)\left(ab+2\right)=0\)

\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}ab+2=0\\b+\sqrt{2}=a\end{cases}}\)(loại \(ab+2=0\) vì \(ab\ge0\))

\(\Leftrightarrow b+\sqrt{2}=a\Rightarrow\sqrt{2-\sqrt{x}}+\sqrt{2}=\sqrt{2+\sqrt{x}}\)

\(\Leftrightarrow2-\sqrt{x}+2+2\sqrt{4-2\sqrt{x}}=2+\sqrt{x}\)

\(\Leftrightarrow2-2\sqrt{x}+2\sqrt{4-2\sqrt{x}}=0\Leftrightarrow\sqrt{4-2\sqrt{x}}=\sqrt{x}-1\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1\ge0\\4-2\sqrt{x}=x-2\sqrt{x}+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=3\left(tm\right)\end{cases}}\)

Vậy pt cho có nghiệm duy nhất x=3.

30 tháng 4 2020

ĐKXĐ : \(0\le x\le4\)

Đặt \(\sqrt{2+\sqrt{x}}=a;\sqrt{2-\sqrt{x}}=b\)( a,b \(\ge\)0 )

\(\Rightarrow ab=\sqrt{4-x};a^2+b^2=4\)

PT đã cho trở thành : \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)

\(\Leftrightarrow a^2\sqrt{2}-a^2b+b^2\sqrt{2}+ab^2=\sqrt{2}\left(2-b\sqrt{2}+a\sqrt{2}-ab\right)\)

\(\Leftrightarrow\sqrt{2}\left(a^2+b^2-2+ab\right)-ab\left(a-b\right)=2\left(a-b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+2\right)=\sqrt{2}\left(2+ab\right)\)

vì ab + 2 \(\ne\)0 nên a - b = \(\sqrt{2}\)

Bình phương hai vế, ta có :
\(a^2-2ab+b^2=2\Rightarrow ab=1\)

\(\Rightarrow\sqrt{4-x}=1\)

từ đó tìm được x = 3 ( thỏa mãn )

1 tháng 9 2017

Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)

=> (n + 1).n : 2 = a.111

=> n(n + 1) = a.222

=> n(n + 1) = a.2.3.37

a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6

=> n(n + 1) = 36.37

=> n = 36

Vậy cần 36 số hạng 

cho mình nha

1 tháng 9 2017

chả liên quan gì cả sao gửi vô đây vậy bạn