chứng tỏ rằng hiệu ab - ba (với a lớn hơn hoặc bằng b) bao giờ cũng chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
ab - ba = (10a + b) - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9.(a - b) chia hết cho 9
1/ Gọi 2 số đó là a,b thỏa mãn a:7=k dư c và b/7=m dư c. =>a=7k+c và b=7m+c
a-b=7k+c-(7m+c)=7k-7m=7(k-m) chia hết cho 7
2/ Ta có aaa chia hết cho 111 và 111=3.37 chia hết cho 37 nên aaa chia hết cho 37.
c/ ab-ba=10a+b-10b-a=9a-9b=9(a-b) chia hết cho 9
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
a) \(\overline{aaa}=111a=37.3a\)
Vậy số có dạng \(\overline{aaa}\)luôn luôn chia hết cho 37
b) Nếu a bằng b thì hiệu đó bằng 0. Vậy nếu a bằng b thì số đó chia hết cho 9.
Nếu a > b thì ab - ba = a x 10 + b - (b x 10 + a) = a x 10 + b - b x 10 - a = a x 9 + b x 9
Vì a x 9 + b x 9 chia hết cho 9 nên suy ra hiệu ab - ba với a lớn hơn hoặc bằng b bao giờ cũng chia hết cho 9
Ta có :
ab - ba = 10a + b - (10b + a)
10 + b - 10b - a = ab - ba
=> 9a - 9b = ab - ba
9(a - b) chia hết cho 9 do có cơ số 9 (luôn đúng với mọi số a và b)
Vậy ab - ba chia hết cho 9 (đpcm)
Ta có : ab-ba = 10a+b - ( 10b+a )
10b- 10b-a = ab-ba
=> 9a-9b = ab-ba
9 ( a-b ) chia hết cho 9 vì có cơ số 9 ( luôn đúng với mọi số a và b )
Vậy ab-ba chia hết cho 9 ( đpcm )
ab-ba
=(10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b=9(a-b)
=>ab-ba luôn chia hết cho 9
a) Ta có: aaa=a.111
=a.3.37 chia hết cho 37
b)Ta có: ab-ba=(10a+b)-(10b+a)
=(10a-a)-(10b-b)
=9a-9b
=9(a-b) chia hết cho 9 (đpcm)
a) Ta có:
aaa = 100a + 10a + a
= 111a
= 3.37.a chia hết cho 37
b) Ta có:
ab - ba = (10a + b) - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9.(a - b) chia hết cho 9
Ta có: ab-ba=(10a+b)-(10b+a)=9a-9b, chia hết cho 9
Chúc bạn học giỏi nha!
aaa = 100a + 10a + a
= a×111
= a×3×37 \(⋮\)37
\(\Rightarrow\)aaa \(⋮\)37.
1. Ta có: aaa = 111 * a
Mà 111 chia hết cho 37
=> Số có dạng aaa luôn chia hết cho 37
Ta có: ab - ba= 10a + b -( 10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9( a - b) chia hết cho 9 với mọi a, b
Vậy hiệu ab - ba (với a lớn hơn hoặc bằng b) bao giờ cũng chia hết cho 9.
\(ab-ba=10a+b-10b+a=9a-9b=9\left(a-b\right)\) chia het cho 9.